scholarly journals Identifikasi Infraspesifik Fusarium oxysporum asal Subtrat Nonpisang dan Kemampuan Pindah Inangnya ke Tanaman Pisang

2019 ◽  
Vol 15 (1) ◽  
pp. 27 ◽  
Author(s):  
Gayuh Rahayu ◽  
Widodo Widodo ◽  
Ni Putu Winda Mahasari

Infra-specific Identification of Fusarium oxysporum from Nonbanana Substrates and Its Ability to Move Hosts to Banana PlantsFusarium oxysporum has various life style, i.e. saprobe, endophyte and pathogen. Plant pathogenic F. oxysporum are divided into many forma specialis (f. sp.) depending on the host, for instance F. oxysporum f. sp. cubense (Foc), a causal agent of Panama disease of banana. The study aimed to determine the infraspecific identity of F. oxysporum from non-banana host and evaluate its ability to jump banana plants. Infraspecific identity was determined through a molecular approach using 3 specific primers to recognize TR4 race (TR4 F/R, TR4 F/R1, and FocSc-1/ FocSc-2), while the host’s transfer ability was tested on 2 banana cultivars namely cv. Ambon and Tanduk. Thirteen strain studied  i.e IPBCC 88,012, IPBCC 07,528, IPBCC 07,561, IPBCC 08,562, IPBCC 08,568, IPBCC 10.674, IPBCC 14.1236, IPBCC 14.1237, IPBCC 14.1238 and IPBCC 14.1239 were TR4 Foc; IPBCC 07,338 and IPBCC 14.1242 are race Foc 4. The pathogenicity test of Foc IPBCC 88,012, 07,328, 08,561, 10,674 and 14.1236 derived from cucumbers, soil, agarwood sapwood, insect nests and quinine tree endophytes showed that these strains were able to move to banana plant. This shows that Foc may not host-specific and the infaspecific term forma specialis is therefore debatable.

Author(s):  
Takeshi Toda ◽  
Shun Hanesaka ◽  
Kuniaki Shishido ◽  
Shin-ichi Fuji ◽  
Hiromitsu Furuya

AbstractPrimers specific for the hypothetical forma specialis of Fusarium oxysporum were designed to amplify DNA from this pathogenic fungus that infects plants including lilies. The F. oxysporum sequence between the transposal elements han and hop was used for primer design. Three primer pairs designed from this region were confirmed as specific for 24 isolates of F. oxysporum pathogenic to lilies, except for one pathogenic isolates as extraordinary. No amplification was observed from F. oxysporum non-pathogenic to lily, from 12 forma specialis, and 14 fungi and oomycetes concerned with Liliaceae plants. We propose that specific primers designed from this region will be useful to detect isolates of F. oxysporum that are pathogenic to lilies.


Agronomy ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1955
Author(s):  
Anysia Hedy Ujat ◽  
Ganesan Vadamalai ◽  
Yukako Hattori ◽  
Chiharu Nakashima ◽  
Clement Kiing Fook Wong ◽  
...  

The re-emergence of the Fusarium wilt caused by Fusarium odoratissimum (F. odoratissimum) causes global banana production loss. Thirty-eight isolates of Fusarium species (Fusarium spp.) were examined for morphological characteristics on different media, showing the typical Fusarium spp. The phylogenetic trees of Fusarium isolates were generated using the sequences of histone gene (H3) and translation elongation factor gene (TEF-1α). Specific primers were used to confirm the presence of F. odoratissimum. The phylogenetic trees showed the rich diversity of the genus Fusarium related to Fusarium wilt, which consists of F. odoratissimum, Fusarium grosmichelii, Fusarium sacchari, and an unknown species of the Fusarium oxysporum species complex. By using Foc-TR4 specific primers, 27 isolates were confirmed as F. odoratissimum. A pathogenicity test was conducted for 30 days on five different local cultivars including, Musa acuminata (AAA, AA) and Musa paradisiaca (AAB, ABB). Although foliar symptoms showed different severity of those disease progression, vascular symptoms of the inoculated plantlet showed that infection was uniformly severe. Therefore, it can be concluded that the Fusarium oxysporum species complex related to Fusarium wilt of banana in Malaysia is rich in diversity, and F. odoratissimum has pathogenicity to local banana cultivars in Malaysia regardless of the genotype of the banana plants.


2017 ◽  
Vol 53 (No. 3) ◽  
pp. 144-152 ◽  
Author(s):  
Ramírez-Ramírez María de Jesús ◽  
N. Alejandra Mancilla-Margalli ◽  
Meza-Álvarez Lucía ◽  
Turincio-Tadeo Ramón ◽  
Pena Doralinda Guzmán-de ◽  
...  

Fusarium oxysporum is reported as the principal causal agent limiting production of Agave tequilana Weber var. azul, but frequent isolation of F. solani, and symptoms typical of F. solani as a pathogen like severe reddish coloured root rot and loss of soil anchorage are frequently associated with diseased agaves. Inoculations of agave plantlets with F. solani induced typical agave root rot symptoms in greenhouse trials. The incidence of both pathogens was determined molecularly with specific primers in the ITS2 sequence. Dispersion patterns of agave wilt, determined in plantations of different age, indicated a tendency to produce aggregated patterns over time as the disease spread from the initial symptomatic plant to adjacent plants. Although both fungi were isolated from agave diseased plants, and in spite of the higher percentage of detection and root rot symptoms, it is concluded that F. solani may have a greater impact in agave wilt.


Plant Disease ◽  
2004 ◽  
Vol 88 (1) ◽  
pp. 83-83 ◽  
Author(s):  
A. Garibaldi ◽  
G. Gilardi ◽  
M. L. Gullino

Lamb's lettuce (Valerianella olitoria), also known as corn salad, is increasingly grown in Italy and used primarily in the preparation of mixed processed salad. In the summer of 2003, plants of lamb's lettuce cvs. Trophy and Palmares exhibiting wilt symptoms were observed in several commercial greenhouses near Bergamo in northern Italy. Wilted 30-day-old plants were observed first during the month of June, at the time of thinning when temperatures ranged between 28 and 35°C. Disease was generally uniform in the greenhouses and 30 to 50% of the plants were affected. Vascular tissue of affected seedlings appeared red or brown but later turned brown or black. Affected plants were stunted and developed yellowed leaves. Vascular discoloration was continuous from the upper taproot through the crown to the leaf. Fusarium oxysporum was consistently isolated from symptomatic vascular tissue onto a Fusarium-selective medium (1). Seeds of the same cultivars (Trophy and Palmares) affected by the wilt in the field were artificially inoculated by dipping them for 15 min into spore suspensions (1 × 106 conidia per ml) of three isolates of F. oxysporum obtained from infected plants. Noninoculated seeds served as control treatments. Forty seeds per treatment were sown in pots (1-liter volume) containing steam-sterilized soil and maintained at 25°C in a growth chamber programmed for 12 hours of light per day. Wilt symptoms developed on both cultivars 20 days after seeding, and F. oxysporum was consistently reisolated from infected plants. The plants obtained from noninoculated seeds remained healthy. The pathogenicity test was carried out twice with similar results. To our knowledge, this is the first report of F. oxysporum causing vascular wilt of lamb's lettuce and may warrant a new forma specialis designation. Reference: (1) H. Komada. Rev. Plant Prot. Res. 8:114, 1975.


2019 ◽  
Vol 8 (29) ◽  
Author(s):  
Shuta Asai ◽  
Yu Ayukawa ◽  
Pamela Gan ◽  
Sachiko Masuda ◽  
Ken Komatsu ◽  
...  

Fusarium oxysporum f. sp. cubense is the causal agent of banana Fusarium wilt, also known as Panama disease. Here, we present a high-quality genome sequence of F. oxysporum f. sp. cubense strain 160527. The genome assembly is composed of 12 contigs with a total assembly length of 51,139,495 bp (N 50 contig length, 4,884,632 bp).


2015 ◽  
Vol 105 (12) ◽  
pp. 1512-1521 ◽  
Author(s):  
Randy C. Ploetz

Banana (Musa spp.) is one of the world’s most important fruits. In 2011, 145 million metric tons, worth an estimated $44 billion, were produced in over 130 countries. Fusarium wilt (also known as Panama disease) is one of the most destructive diseases of this crop. It devastated the ‘Gros Michel’-based export trades before the mid-1900s, and threatens the Cavendish cultivars that were used to replace it; in total, the latter cultivars are now responsible for approximately 45% of all production. An overview of the disease and its causal agent, Fusarium oxysporum f. sp. cubense, is presented below. Despite a substantial positive literature on biological, chemical, or cultural measures, management is largely restricted to excluding F. oxysporum f. sp. cubense from noninfested areas and using resistant cultivars where the pathogen has established. Resistance to Fusarium wilt is poor in several breeding targets, including important dessert and cooking cultivars. Better resistance to this and other diseases is needed. The history and impact of Fusarium wilt is summarized with an emphasis on tropical race 4 (TR4), a ‘Cavendish’-killing variant of the pathogen that has spread dramatically in the Eastern Hemisphere.


2021 ◽  
Author(s):  
Minhui Li ◽  
Lifei Xie ◽  
Meng Wang ◽  
Yilian Lin ◽  
Yong Zhang ◽  
...  

AbstractMicroRNAs (miRNAs) are small non-coding RNAs that regulate protein-coding gene expression primarily found in plants and animals. Fungi produce microRNA-like RNAs (milRNAs) that are structurally similar to miRNAs and functionally important in various biological processes. The fungus Fusarium oxysporum f. sp. cubense (Foc) is the causal agent of Panama disease that threatens global banana production. It remains uncharacterized about the biosynthesis and functions of milRNAs in Foc. In this study, we investigated the biological function of milRNAs contributing to Foc pathogenesis. Within 24 hours post infecting the host, the Argonaute coding gene FoQDE2, and two Dicer coding genes FoDCL1 and FoDCL2, all of which are involved in milRNA biosynthesis, were significantly induced. FoQDE2 deletion mutant exhibited decreased virulence and hypersensitivity to hydrogen peroxide (H2O2). These results indicate that milRNA biosynthesis is crucial for Foc pathogenesis. By small RNA sequencing, we identified 364 small RNA-producing loci in the Foc genome, 25 of which were significantly downregulated in the FoQDE2 deletion mutant, from which milR-87 was verified as a FoQDE2-depedent milRNA based on qRT-PCR analysis. Through deletion and overexpression of milR-87 in the wild-type Foc strain, functions of milR-87 were studied. The results showed that milR-87 is crucial for Foc virulence in infection process. We furthermore identified a glycosyl hydrolase-coding gene, FOIG_15013, as the direct target of milR-87. The FOIG_15013 deletion mutant displayed a dramatic increase in the growth, conidiation and virulence. Transient expression of FOIG_15013 in Nicotiana benthamiana leaves activates the host defense responses. Collectively, this study documents the involvement of milRNAs in the manifestation of the devastating fungal disease in banana, and demonstrates the importance of milRNAs in the pathogenesis and other biological processes. Further analyses of the biosynthesis and expression regulation of fungal milRNAs may offer a novel strategy to combat devastating fungal diseases.Author summaryThe fungus Fusarium oxysporum f. sp. cubense (Foc) is the causal agent of Panama disease that threatens global banana production. As a typical representative of F. oxysporum species complex, the pathogen has been widely concerned. However, pathogenesis of Foc is not fully elucidated. In particular, pathogenic regulatory mechanism of the microRNA like small RNAs (milRNAs) found in Foc is unknown. Here, we found that FoQDE2, one Argonaute coding gene, and two Dicer coding genes FoDCL1 and FoDCL2, which are involved in milRNA biosynthesis, are significantly induced during the early infection stage of Foc. The results suggested that the milRNAs biosynthesis mediated by these genes may play an active role in the infection process of Foc. Based on this assumption, we subsequently found a FoQDE2-dependent milRNA (milR-87) and identified its target gene. Functional analysis showed that FoQDE2, miR-87 and its target gene were involved in the pathogenicity of Foc in different degree. The studies help us gain insight into the pathogenesis with FoQDE2, milR-87, and its target gene as central axis in Foc. The identified pathogenicity-involved milRNA provides an active target for developing novel and efficient biocontrol agents against Panama disease.


Author(s):  
A. Muntala ◽  
P. M. Norshie ◽  
K. G. Santo ◽  
C. K. S. Saba

A survey was conducted in twenty-five cashew (Anacardium occidentale) orchards in five communities in the Dormaa-Central Municipality of Bono Region of Ghana to assess the incidence and severity of anthracnose, gummosis and die-back diseases on cashew. Cashew diseased samples of leaves, stem, inflorescences, twigs, flowers, nuts and apples showing symptoms (e. g. small, water-soaked, circular or irregular yellow, dark or brown spots or lesions on leaves, fruits and flowers, sunken surface, especially on the apples, blight, gum exudates) were collected for isolation of presumptive causative organism. The pathogen was isolated after disinfecting the excised diseased pieces in 70% ethanol, plated on potato dextrose agar (PDA) and incubated at 28 oC for 3 to 7 days. The identity of the putative pathogen was morphologically and culturally confirmed as belonging to Colletotrichum gloeosporioides species complex using standard mycological identification protocols. The pathogen had varied conidia sizes of between 9-15 up to 20 μm in length and diameter of 3-6 μm. The conidia were straight and cylindrically shaped with rounded or obtuse ends. The septate mycelium was whitish-grey, velvety and cotton-like in appearance from the top. The results confirmed the presence of the pathogen in the orchards with incidence ranging from 6.9% and 14.0% for gummosis and averaged 22.9% for anthracnose infected orchards. The result of the pathogenicity test confirmed the isolates to be pathogenic on inoculated cashew seedlings and were consistently re-isolated, thereby establishing the pathogen as the true causal agent of the said diseases in cashew trees and thus completed the Koch’s postulate.


Plant Disease ◽  
2014 ◽  
Vol 98 (5) ◽  
pp. 698-698 ◽  
Author(s):  
Y. Tomitaka ◽  
T. Usugi ◽  
R. Kozuka ◽  
S. Tsuda

In 2009, some commercially grown tomato (Solanum lycopersicum) plants in Chiba Prefecture, Japan, exhibited mosaic symptoms. Ten plants from a total of about 72,000 cultivated plants in the greenhouses showed such symptoms. To identify the causal agent, sap from leaves of the diseased plants was inoculated into Chenopodium quinoa and Nicotiana benthamiana plants. Local necrotic lesions appeared on inoculated leaves of C. quinoa, but no systemic infection was observed. Systemic mosaic symptoms were observed on the N. benthamiana plants inoculated. Single local lesion isolation was performed three times using C. quinoa to obtain a reference isolate for further characterization. N. benthamiana was used for propagation of the isolate. Sap from infected leaves of N. benthamiana was mechanically inoculated into three individual S. lycopersicum cv. Momotaro. Symptoms appearing on inoculated tomatoes were indistinguishable from those of diseased tomato plants found initially in the greenhouse. Flexuous, filamentous particles, ~750 nm long, were observed by electron microscopy in the sap of the tomato plants inoculated with the isolate, indicating that the infecting virus may belong to the family Potyviridae. To determine genomic sequence of the virus, RT-PCR was performed. Total RNA was extracted from the tomato leaves experimentally infected with the isolate using an RNeasy Plant Mini kit (QIAGEN, Hilden, Germany). RT-PCR was performed by using a set of universal, degenerate primers for Potyviruses as previously reported (2). Amplicons (~1,500 bp) generated by RT-PCR were extracted from the gels using the QIAquick Gel Extraction kit (QIAGEN) and cloned into pCR-BluntII TOPO (Invitrogen, San Diego, CA). DNA sequences of three individual clones were determined using a combination of plasmid and virus-specific primers, showing that identity among three clones was 99.8%. A consensus nucleotide sequence of the isolate was deposited in GenBank (AB823816). BLASTn analysis of the nucleotide sequence determined showed 99% identity with a partial sequence in the NIb/coat protein (CP) region of Colombian datura virus (CDV) tobacco isolate (JQ801448). Comparison of the amino acid sequence predicted for the CP with previously reported sequences for CDV (AY621656, AJ237923, EU571230, AM113759, AM113754, and AM113761) showed 97 to 100% identity range. Subsequently, CDV infection in both the original and experimentally inoculated plants was confirmed by RT-PCR using CDV-specific primers (CDVv and CDVvc; [1]), and, hence, the causal agent of the tomato disease observed in greenhouse tomatoes was proved to be CDV. The first case of CDV on tomato was reported in Netherlands (3), indicating that CDV was transmitted by aphids from CDV-infected Brugmansia plants cultivated in the same greenhouse. We carefully investigated whether Brugmansia plants naturally grew around the greenhouses, but we could not find them inside or in proximity to the greenhouses. Therefore, sources of CDV inoculum in Japan are still unclear. This is the first report of a mosaic disease caused by CDV on commercially cultivated S. lycopersicum in Japan. References: (1) D. O. Chellemi et al. Plant Dis. 95:755, 2011. (2) J. Chen et al. Arch. Virol. 146:757, 2001. (3) J. Th. J. Verhoeven et al. Eur. J. Plant. Pathol. 102:895, 1996.


Sign in / Sign up

Export Citation Format

Share Document