Preparation and Study the Electrical and Optical Properties for (PVA-PEG-Sr2O3) Nanocomposites

2021 ◽  
Vol 19 (10) ◽  
pp. 47-55
Author(s):  
Safa Ahmed Jabbar Al-Rubaye ◽  
Nassar A. Al-lsawi ◽  
Ali R. Abdulridha

In the presented work, the optical and electrical properties of composite materials (PVA-PEG-Sr2O3) were measured, as the electrical properties were verified at various frequencies in range of 100 Hz-6 MHz. In addition, the experimental results showed that the increase in frequency causes a reduction in the dielectric loss (δ) and dielectric constant (ɛ), and there is an increase in ɛ due to the increase in the content of antimony oxide (Sr2O3). It increases with increasing frequency and decreases with increasing Sr2O3 content in PVA-PEG-Sr2O3 compounds, the result of the optical properties of the nanoparticles (PVA-PEG-Sr2O3) showed that the values transmittance and energy gap were reduced with the increases in the concentrations of Sr2O3 NPs, whereas the values related to extinction coefficient, absorption coefficient, optical conductivity, refractive index, and dielectric constant (imaginary, real) were increased with increase in the concentration of Sr2O3 NPs.

2007 ◽  
Vol 280-283 ◽  
pp. 357-360
Author(s):  
M.M. Mosaad ◽  
M.I. Abd El-Ati ◽  
S.A. Olofa ◽  
A. Ismal

The electrical resistivity (r), the dielectric constant (e), and the dielectric loss (tan d) were accurately measured in the temperature range 60-200oC for the samples (BaTiO3-La2O3-Nb2O5) with (Nb2O5 = 0.1) wt% and La2O3 = 0.0, 0.1, 0.2, 0.3 and 0.4). It is found that the addition of La content cause increase in resistivity and decrease the dielectric constant.


2016 ◽  
Vol 23 (02) ◽  
pp. 1650001 ◽  
Author(s):  
ZAKI S. KHALIFA

Crystal structure, microstructure, and optical properties of TiO2 thin films deposited on quartz substrates by metal-organic chemical vapor deposition (MOCVD) in the temperature range from 250[Formula: see text]C to 450[Formula: see text]C have been studied. The crystal structure, thickness, microstructure, and optical properties have been carried out using X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), atomic force microscope (AFM), and UV-visible transmittance spectroscopy, respectively. XRD patterns show that the obtained films are pure anatase. Simultaneously, the crystal size calculated using XRD peaks, and the grain size measured by AFM decrease with the increase in deposition temperature. Moreover, the texture of the films change and roughness decrease with the increase in deposition temperature. The spectrophotometric transmittance spectra have been used to calculate the refractive index, extinction coefficient, dielectric constant, optical energy gap, and porosity of the deposited films. While the refractive index and dielectric constant decrease with the increase of deposition temperature, the porosity shows the opposite.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Prabhat Ranjan ◽  
Praveen K. Surolia ◽  
Tanmoy Chakraborty

Abstract Iron-based chalcopyrite materials have diverse applications in solar cells, spintronic, thermoelectric devices, LEDs and medical sciences. In this report we have studied structure, electronic and optical properties of chalcopyrite-type nano-cluster XFeY2 (X=Cu, Ag, Au; Y=S, Se, Te) systematically by using Density Functional Theory (DFT). Our computed HOMO-LUMO energy gap of XFeY2 is in the range of 1.568–3.982 eV, which endorses its potential application in optoelectronic devices and solar cells. The result shows that chalcopyrite-type material AuFeS2 having a star-type structure with point group C2v and sextet spin multiplicity, is the most stable cluster with HOMO-LUMO energy gap of 3.982 eV. The optical properties viz. optical electronegativity, refractive index, dielectric constant, IR and Raman activity of these nano-clusters are also investigated. The result exhibits that HOMO-LUMO energy gap of XFeY2 along with optical electronegativity and vibrational frequency decreases from S to Se to Te, whereas refractive index and dielectric constant increases in the reverse order.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Gyeong-Nam Lee ◽  
Ponnamma Machaiah M. ◽  
Wang-Hee Park ◽  
Joondong Kim

The enhancement of the optical and electrical properties of TCO films was investigated by depositing different layers of AZO (100 nm), Ag (5 nm)/AZO (95 nm), and ITO (45 nm)/Ag (5 nm)/AZO (50 nm) upon n-Si substrate at room temperature by magnetron sputtering method. The ITO/Ag/AZO device efficiently improved the electrical and optical properties with the low sheet resistance of 2.847 Ω/sq. and an increase in the rectification ratio of 455.60% when compared with AZO and Ag/AZO devices. The combination of ITO/Ag/AZO provided the optimum results in all the electrical and optical properties. These results showed that within the optimized thickness range of 100 nm, compared to AZO and Ag/AZO, ITO/Ag/AZO device showed the improvement for both optical and electrical properties at room temperature.


Author(s):  
Sabah A. Salman ◽  
Nabeel A. Bakr ◽  
Marwa R. Jwameer

Films of polymer (polyvinyl alcohol (PVA)) doped with CuCl salt at different concentrations (2 and 10) wt% were prepared using casting technique. The optical properties of the films were studied after annealing. The transmission and absorption spectra have been recorded in the wavelength range of (300-1100) nm. The effect of annealing on the optical properties for (PVA-CuCl) films with different concentrations (2 and 10) wt% of copper chloride salt shows that the transmittance decreased after annealing for all the films. The optical constants (absorption coefficient, refractive index, extinction coefficient, real and imaginary parts of dielectric constant) for all the films are affected by annealing. The energy gap (Eg) of all the films decreased after annealing.


2006 ◽  
Vol 3 (1) ◽  
pp. 56-61
Author(s):  
Baghdad Science Journal

In this research study the effect of fish on the properties optical films thickness 1200-1800 and calculated energy gap Basra direct transport permitted and forbidden to membranes and urged decreasing values ??of Optical Energy Gap increase fish included accounts optical also calculate the constants visual as factories winding down and the refractive index and reflectivity membranes also by real part and imaginarythe dielectric constant


2003 ◽  
Vol 771 ◽  
Author(s):  
H. Detert ◽  
O. Sadovski

AbstractMonodisperse oligo(phenylenevinylene)s end-capped with arylamines have been prepared via Horner Olefinations from bisphosphonates and arylaminobenzaldehydes. The influences of the conjugation length, different arylamine end groups, and of side chains with various electronic character on the electrical and optical properties of the chromophores are investigated. The elongation of the π-conjugated segment from 3 to 5 rings gives rise to bathochromic shifts of the electronic spectra and a slight increase of the oxidation potential. The same but more pronounced is true when the central electron donating ethers are replaced by the strong acceptor alkylsulfone. The electronic spectra of chromophores with triphenylamine and with N-alkylphenothiazines as end groups are quite similar, but the heterocyclic unit reduces the oxidation potential. The incorporation of a chromophor into a segmented copolymer has only negligible effect on the optical and electrical properties.


2007 ◽  
Vol 336-338 ◽  
pp. 775-778
Author(s):  
Yu Xing Xu ◽  
Zi Long Tang ◽  
Zhong Tai Zhang ◽  
Li Hai Xu

Sr0.48Ba0.24Ca0.28TiO3-based varistor ceramics with an excellent capacitor-varistor multifunctional characteristics (V1mA = 11 ~ 49 ν.mm-1, α = 6.1 ~ 11.3, ε r max=3.5×105, tanδmin = 5%) were prepared using conventional solid method. The effect of oxidation temperature and time on structure and electrical properties were investigated. The results show that with increasing the oxidation temperature from 800°C to 900°C, the varistor voltage V1mA and non-linearity coefficient α defining varistor characteristics increase linearly, while the dielectric constant ε r and dielectric loss tanδ decrease linearly. There exists an optimum α value when the specimens were oxidized at 850°C for 3h. This behavior was explained through various defect reactions of dopants.


2021 ◽  
pp. 089270572110386
Author(s):  
Ali F Al-Shawabkeh ◽  
Ziad M Elimat ◽  
Khaleel N Abushgair

The goal of this study was to investigate the optical properties of the prepared polyvinyl chloride (PVC)/zinc oxide (ZnO) nanocomposite films. The PVC/ZnO nanocomposite films consist of the addition of different concentrations with both non-annealed ZnO nanoparticles and ZnO nanoparticles annealed at temperature of 700°C. The PVC/ZnO nanocomposite films by weight concentrations of (0 wt.%, 2.5 wt.%, 5 wt.% and 10 wt.%) have been prepared by the casting method. The optical absorbance and transmittance values of the composites films were measured in the wavelength range between (250 to 1100 nm) at room temperature by using the UV-1800 Shimadzu spectrophotometer. The optical properties (absorption coefficient, dielectric constant, refractive index, and optical conductivity) have been investigated by the ultraviolet (UV) spectrophotometer. The optical parameters (direct optical energy gap, excitation energy for electronic transitions, the dispersion energy, static refractive index, static dielectric constant, optical oscillator strengths, the moments of optical spectrum, linear optical susceptibility, third-order nonlinear optical susceptibility, nonlinear refractive index, high-frequency dielectric constant, the carrier concentration to the effective mass ratio, the long wavelength refractive index and the plasma frequency) were calculated. The results showed that the optical properties behavior of the PVC/ZnO nanocomposite films was found to be dependent on the ZnO concentration, and photon wavelength. In addition, the results of the study show that the optical parameters can be influenced by alter the concentration of the nonannealed and annealed a ZnO nanoparticle in the PVC polymer matrix.


2021 ◽  
Vol 900 ◽  
pp. 16-25
Author(s):  
Tabarak Mohammed Awad ◽  
May A.S. Mohammed

In this study, some optical properties were studied of the pure vinyl polyvinyl alcohol (PVA) nanopolymer (German origin). Under the influence of different temperatures and pressures of PVA. Where 25 samples were prepared for the purpose of conducting the research. Which studied the study of these samples was done by recording the absorbance and transmittance spectra of the wavelengths (200-900) nm. From them, absorbance, transmittance, reflectivity, absorption coefficient, refractive index, extinction coefficient, complex dielectric constant were calculated. At different temperatures (25,40, 80, 120, 160)°C. And with different pressures within the range (7.5,8,8.5,9,9.5) MPa. The results are that the permeability of the polymer (PVA) at different temperatures for each pressure decreases with increasing temperature, and that all other calculated optical properties increase with increasing temperature.


Sign in / Sign up

Export Citation Format

Share Document