Perbandingan Komposisi Tumbuhan Lumut Epifit Pada Hutan Alam, Kebun Kopi dan Kebun Teh di Sepanjang Gradien Ketinggian Gunung Ungaran, Jawa Tengah

2015 ◽  
Vol 17 (2) ◽  
pp. 83
Author(s):  
Lilih Khotim Perwati ◽  
Rully Rahadian ◽  
Karyadi Baskoro

Study on the impact of differences in altitude and land use changes was conducted in natural forest, coffee and tea plantations in along altitudinal gradient of Ungaran mountain from 750 to 2040 m a.s.l. The objective of this study were to compare composition of epiphytic bryophytes species in third sites. Epiphytic bryophytes sampling were done in plots 20 x 30 cm were applied on height of tree betwen 0-2 m. A total of 103 species of epiphytics bryophytes were identified, involve 58 species of mosses (Bryophyta Division) and 45 species of liverworts (Marchantiophyta Division). The composition of bryophytes in natural forest is more diverse than in coffee and tea plantations. Lejeunaceae have the highest number of species. There are seven life forms of epiphytic bryophytes in the present study i.e. Turf, Cushion, Mats, Wefts, Dendroid, Pendant  and Fans. The most common is Mats and Turf form, while Pendant and Dendroid form only found in natural forest.   Key words: Bryophytes, epiphytes, altitude, land use changes, life form

Hydrology ◽  
2021 ◽  
Vol 8 (3) ◽  
pp. 102
Author(s):  
Frauke Kachholz ◽  
Jens Tränckner

Land use changes influence the water balance and often increase surface runoff. The resulting impacts on river flow, water level, and flood should be identified beforehand in the phase of spatial planning. In two consecutive papers, we develop a model-based decision support system for quantifying the hydrological and stream hydraulic impacts of land use changes. Part 1 presents the semi-automatic set-up of physically based hydrological and hydraulic models on the basis of geodata analysis for the current state. Appropriate hydrological model parameters for ungauged catchments are derived by a transfer from a calibrated model. In the regarded lowland river basins, parameters of surface and groundwater inflow turned out to be particularly important. While the calibration delivers very good to good model results for flow (Evol =2.4%, R = 0.84, NSE = 0.84), the model performance is good to satisfactory (Evol = −9.6%, R = 0.88, NSE = 0.59) in a different river system parametrized with the transfer procedure. After transferring the concept to a larger area with various small rivers, the current state is analyzed by running simulations based on statistical rainfall scenarios. Results include watercourse section-specific capacities and excess volumes in case of flooding. The developed approach can relatively quickly generate physically reliable and spatially high-resolution results. Part 2 builds on the data generated in part 1 and presents the subsequent approach to assess hydrologic/hydrodynamic impacts of potential land use changes.


Land ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 234
Author(s):  
Dong Han ◽  
Jiajun Qiao ◽  
Qiankun Zhu

Rural-spatial restructuring involves the spatial mapping of the current rural development process. The transformation of land-use morphologies, directly or indirectly, affects the practice of rural restructuring. Analyzing this process in terms of the dominant morphology and recessive morphology is helpful for better grasping the overall picture of rural-spatial restructuring. Accordingly, this paper took Zhulin Town in Central China as a case study area. We propose a method for studying rural-spatial restructuring based on changes in the dominant and recessive morphologies of land use. This process was realized by analyzing the distribution and functional suitability of ecological-production-living (EPL) spaces based on land-use types, data on land-use changes obtained over a 30-year observation period, and in-depth research. We found that examining rural-spatial restructuring by matching the distribution of EPL spaces with their functional suitability can help to avoid the misjudgment of the restructuring mode caused by the consideration of the distribution and structural changes in quantity, facilitating greater understanding of the process of rural-spatial restructuring. Although the distribution and quantitative structure of Zhulin’s EPL spaces have changed to differing degrees, ecological- and agricultural-production spaces still predominate, and their functional suitability has gradually increased. The spatial distribution and functional suitability of Zhulin are generally well matched, with 62.5% of the matched types being high-quality growth, and the positive effect of Zhulin’s spatial restructuring over the past 30 years has been significant. We found that combining changes in EPL spatial area and quantity as well as changes in functional suitability is helpful in better understanding the impact of the national macro-policy shift regarding rural development. Sustaining the positive spatial restructuring of rural space requires the timely adjustment of local actors in accordance with the needs of macroeconomic and social development, and a good rural-governance model is essential.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Shamsollah Ayoubi ◽  
Nafiseh Sadeghi ◽  
Farideh Abbaszadeh Afshar ◽  
Mohammad Reza Abdi ◽  
Mojtaba Zeraatpisheh ◽  
...  

Abstract Background As one of the main components of land-use change, deforestation is considered the greatest threat to global environmental diversity with possible irreversible environmental consequences. Specifically, one example could be the impacts of land-use changes from oak forests into agricultural ecosystems, which may have detrimental impacts on soil mobilization across hillslopes. However, to date, scarce studies are assessing these impacts at different slope positions and soil depths, shedding light on key geomorphological processes. Methods In this research, the Caesium-137 (137Cs) technique was applied to evaluate soil redistribution and soil erosion rates due to the effects of these above-mentioned land-use changes. To achieve this goal, we select a representative area in the Lordegan district, central Iran. 137Cs depth distribution profiles were established in four different hillslope positions after converting natural oak forests to rainfed farming. In each hillslope, soil samples from three depths (0–10, 10–20, and 20–50 cm) and in four different slope positions (summit, shoulder, backslope, and footslope) were taken in three transects of about 20 m away from each other. The activity of 137Cs was determined in all the soil samples (72 soil samples) by a gamma spectrometer. In addition, some physicochemical properties and the magnetic susceptibility (MS) of soil samples were measured. Results Erosion rates reached 51.1 t·ha− 1·yr− 1 in rainfed farming, whereas in the natural forest, the erosion rate was 9.3 t·ha− 1·yr− 1. Magnetic susceptibility was considerably lower in the cultivated land (χhf = 43.5 × 10− 8 m3·kg− 1) than in the natural forest (χhf = 55.1 × 10− 8 m3·kg− 1). The lower soil erosion rate in the natural forest land indicated significantly higher MS in all landform positions except at the summit one, compared to that in the rainfed farming land. The shoulder and summit positions were the most erodible hillslope positions in the natural forest and rainfed farming, respectively. Conclusions We concluded that land-use change and hillslope positions played a key role in eroding the surface soils in this area. Moreover, land management can influence soil erosion intensity and may both mitigate and amplify soil loss.


2020 ◽  
Vol 13 (1) ◽  
pp. 22
Author(s):  
Tianshi Pan ◽  
Lijun Zuo ◽  
Zengxiang Zhang ◽  
Xiaoli Zhao ◽  
Feifei Sun ◽  
...  

The implementation of ecological projects can largely change regional land use patterns, in turn altering the local hydrological process. Articulating these changes and their effects on ecosystem services, such as water conservation, is critical to understanding the impacts of land use activities and in directing future land planning toward regional sustainable development. Taking Zhangjiakou City of the Yongding River as the study area—a region with implementation of various ecological projects—the impact of land use changes on various hydrological components and water conservation capacity from 2000 to 2015 was simulated based on a soil and water assessment tool model (SWAT). An empirical regression model based on partial least squares was established to explore the contribution of different land use changes on water conservation. With special focus on the forest having the most complex effects on the hydrological process, the impacts of forest type and age on the water conservation capacity are discussed on different scales. Results show that between 2000 and 2015, the area of forest, grassland and cultivated land decreased by 0.05%, 0.98% and 1.64%, respectively, which reduces the regional evapotranspiration (0.48%) and soil water content (0.72%). The increase in settlement area (42.23%) is the main reason for the increase in water yield (14.52%). Most land use covered by vegetation has strong water conservation capacity, and the water conservation capacity of the forest is particularly outstanding. Farmland and settlements tend to have a negative effect on water conservation. The water conservation capacity of forest at all scales decreased significantly with the growth of forest (p < 0.05), while the water conservation capacity of different tree species had no significant difference. For the study area, increasing the forest area will be an effective way to improve the water conservation function, planting evergreen conifers can rapidly improve the regional water conservation capacity, while planting deciduous conifers is of great benefit to long-term sustainable development.


2007 ◽  
Vol 64 (4) ◽  
pp. 317-324 ◽  
Author(s):  
Daniela Mariano Lopes da Silva ◽  
Jean Pierre Henry Balbaud Ometto ◽  
Gré de Araújo Lobo ◽  
Walter de Paula Lima ◽  
Marcos Augusto Scaranello ◽  
...  

Several studies in tropical watersheds have evaluated the impact of urbanization and agricultural practices on water quality. In Brazil, savannas (known regionally as Cerrados) represent 23% of the country's surface, representing an important share to the national primary growth product, especially due to intense agriculture. The purpose of this study is to present a comprehensive evaluation, on a yearly basis, of carbon, nitrogen and major ion fluxes in streams crossing areas under different land use (natural vegetation, sugar cane and eucalyptus) in a savanna region of SE Brazil. Eucalyptus and sugar cane alter the transport of the investigated elements in small watersheds. The highest concentration of all parameters (abiotic parameters, ions, dissolved organic carbon DOC - and dissolved inorganic carbon - DIC) were found in Sugar Cane Watersheds (SCW). The observed concentrations of major cations in Eucalyptus Watersheds (EW) (Mg, Ca, K, Na), as well as DIN and DOC, were found frequently to be intermediate values between those of Savanna Watersheds (SW) and SCW, suggesting a moderate impact of eucalyptus plantations on the streamwater. Same trends were found in relation to ion and nutrient fluxes, where the higher values corresponded to SCW. It is suggested that sugar cane plantations might be playing an important role in altering the chemistry of water bodies.


Hydrology ◽  
2020 ◽  
Vol 7 (1) ◽  
pp. 17 ◽  
Author(s):  
Sekela Twisa ◽  
Shija Kazumba ◽  
Mathew Kurian ◽  
Manfred F. Buchroithner

Understanding the variation in the hydrological response of a basin associated with land use changes is essential for developing management strategies for water resources. The impact of hydrological changes caused by expected land use changes may be severe for the Wami river system, given its role as a crucial area for water, providing food and livelihoods. The objective of this study is to examine the influence of land use changes on various elements of the hydrological processes of the basin. Hybrid classification, which includes unsupervised and supervised classification techniques, is used to process the images (2000 and 2016), while CA–Markov chain analysis is used to forecast and simulate the 2032 land use state. In the current study, a combined approach—including a Soil and Water Assessment Tool (SWAT) model and Partial Least Squares Regression (PLSR)—is used to explore the influences of individual land use classes on fluctuations in the hydrological components. From the study, it is evident that land use has changed across the basin since 2000 (which is expected to continue in 2032), as well as that the hydrological effects caused by land use changes were observed. It has been found that the major land use changes that affected hydrology components in the basin were expansion of cultivation land, built-up area and grassland, and decline in natural forests and woodland during the study period. These findings provide baseline information for decision-makers and stakeholders concerning land and water resources for better planning and management decisions in the basin resources’ use.


Sign in / Sign up

Export Citation Format

Share Document