scholarly journals An Insight of Co-Encapsulation Nigella sativa and Cosmos caudatus Kunth Extracts as Anti-Inflammatory Agent Through In Silico Study

2021 ◽  
Vol 24 (5) ◽  
pp. 152-160
Author(s):  
Nadiyah Zuhroh ◽  
Zubaidah Ningsih ◽  
Anna Safitri

This study analyzes anti-inflammatory activity from extracts of Nigella sativa and Cosmos caudatus Kunth co-encapsulated through in silico molecular docking. The LC-MS results revealed that extracts of N. sativa mostly contained thymoquinone and alpha-hederin, whereas quercetin and kaempferol were the major compounds in C. caudatus K. Nevertheless, the bioactive compounds are usually susceptible to degradation by exposure to light, heat, oxygen, which may limit its biological activity. Therefore, encapsulation is one of the promising techniques to protect bioactive compounds. Ligands were encapsulated with chitosan and sodium tripolyphosphate as wall materials. Cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2) as the target enzymes were docked with a combination of these active compounds (non-encapsulated and encapsulated), using the HEX 8.0 program, and visualized using the Discovery studio visualizer software v16.1.0.15350. Interestingly, docking results of the combination of encapsulated ligands showed no interactions to COX-1 but interacted with COX-2. Therefore, co-encapsulation of extracts combinations has been suggested to act as anti-inflammatory agents targeted specifically to the COX-2 enzyme. The total energy of the encapsulated of combination of extract compounds to COX-2 were -1425.88 (mol/cal) for thymoquinone + quercetin; -1435.87 (mol/cal) for thymoquinone + kaempferol; 1175.97 (mol/cal) for quercetin + alpha hederin; -957.74 (mol/cal) for kaempferol + alpha hederin; and -283.3 (mol/cal) for diclofenac sodium, as a control NSAID drug. These suggest that encapsulated active compounds in N. sativa and C. caudatus K. have potency as a drug candidate for the selective NSAIDs category, which can be subjected to further in vitro and in vivo studies.

Food Research ◽  
2020 ◽  
Vol 4 (3) ◽  
pp. 780-785
Author(s):  
Y.T. Wijaya ◽  
A. Yulandi ◽  
A.W. Gunawan ◽  
Yanti

Inflammatory markers such as cyclooxygenase (COX)-2, inducible nitric oxide synthase (iNOS), myeloperoxidase (MPO), and prostaglandin (PEG) are widely known as major targets in discovering natural anti-inflammatory drugs for the treatment of inflammationrelated diseases. Non-steroidal anti-inflammatory drugs (NSAIDs) such as ibuprofen and aspirin are mostly used at present, however, some NSAIDS have been reported to cause gastrointestinal side effect due to ligand-protein interaction. Molecular docking is a promising tool to study such modes of interaction. In this study, we evaluated the potential use of anthocyanin and ternatin flavonoids as natural anti-inflammatory agents for treatment of inflammatory-related diseases using in silico molecular docking assay. Automated docking study using Protein-Ligand ANT System (PLANTS) and AutoDock Vina was performed with various ligand molecules, including ibuprofen, anthocyanin, and ternatin against the protein crystal structures of COX-1, COX-2, iNOS, and MPO. The in silico data demonstrated that ibuprofen bound effectively to the active site of COX-1 and MPO with minimum binding energy, yet the compound required more energy to bind the active site of COX-2. Ternatin flavonoid was bound to COX-2 and iNOS with minimum binding energy. In terms of binding energy, anthocyanin flavonoid was found to be effective for inhibiting COX-1, COX-2, and iNOS. These results suggested that anthocyanin and ternatin flavonoids may potentially be developed as anti-inflammatory drug candidate for the treatment of inflammatory-related diseases.


Plants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 825
Author(s):  
Mohammad Khalid ◽  
Mohammed H. Alqarni ◽  
Ambreen Shoaib ◽  
Muhammad Arif ◽  
Ahmed I. Foudah ◽  
...  

The fruits of Spondias mangifera (S. mangifera) have traditionally been used for the management of rheumatism in the northeast region of India. The present study explores the probable anti-arthritis and anti-inflammatory potential of S. mangifera fruit extract’s ethanolic fraction (EtoH-F). To support this study, we first approached the parameters in silico by means of the active constituents of the plant (beta amyrin, beta sitosterol, oleonolic acid and co-crystallised ligands, i.e., SPD-304) via molecular docking on COX-1, COX-2 and TNF-α. Thereafter, the absorption, distribution, metabolism, excretion and toxicity properties were also determined, and finally experimental activity was performed in vitro and in vivo. The in vitro activities of the plant extract fractions were evaluated by means of parameters like 1,1-Diphenyl-2- picrylhydrazyl (DPPH), free radical-reducing potential, albumin denaturation, and protease inhibitory activity. The in vivo activity was evaluated using parameters like COX, TNF-α and IL-6 inhibition assay and arthritis score in Freund Adjuvant (CFA) models at a dose of 400 mg/kg b.w. per day of different fractions (hexane, chloroform, alcoholic). The molecular docking assay was performed on COX-1, COX-2 and TNF-α. The results of in vitro studies showed concentration-dependent reduction in albumin denaturation, protease inhibitors and scavenging activity at 500 µg/mL. Administration of the S. mangifera alcoholic fraction at the abovementioned dose resulted in a significant reduction (p < 0.01) in arthritis score, paw diameters, TNF-α, IL-6 as compared to diseased animals. The docking results showed that residues show a critical binding affinity with TNF-α and act as the TNF-α antagonist. The alcoholic fraction of S. mangifera extract possesses beneficial effects on rheumatoid arthritis as well as anti-inflammatory potential, and can further can be used as a possible agent for novel target-based therapies for the management of arthritis.


Author(s):  
Hassanein H Hassanein ◽  
Doaa E Abdel Rahman ◽  
Marwa A Fouad ◽  
Rehab F Ahmed

New hexahydropyrimido[1,2- a]azepine derivatives bearing functionalized aryl and heterocyclic moieties were synthesized as anti-inflammatory agents with better safety profiles. All synthesized compounds were assessed in vitro for their COX-1 and COX-2 inhibition activities. The most selective compounds, 2f, 5 and 6, were further evaluated for their in vivo anti-inflammatory activity and PGE2 inhibitory activity. To rationalize their selectivity, molecular docking within COX-1 and COX-2 binding sites was performed. Their physicochemical properties and drug-like nature profile were also calculated. The good activity and selectivity of compounds 2f, 5 and 6 were rationalized using a molecular docking study and supported by in vivo studies. These promising findings are encouraging for performing future investigations of these derivatives.


ALCHEMY ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 1-11
Author(s):  
Khoirotul Ummah ◽  
Robby Gus Mahardika ◽  
Ana Mardliyah

This study reports the synthesis of vanillyl methyl ketone from eugenol through Wacker oxidation and anti-inflammatory activity test toward COX-1 and COX-2 through in silico analysis. Wacker oxidation process was catalyzed by PdCl2 and CuCl2 using DMF solvent under the aerobic condition at room temperature for 48 hours. The product of the synthesis was purified by column chromatography and was characterized by NMR, IR, and MS spectroscopy. Characterization by spectroscopic methods showed that vanillyl methyl ketone was formed with a yield of 45% and vanillin (3%) was produced as a by-product. The anti-inflammatory activity of vanillyl methyl ketone was carried out by molecular docking toward   COX-1 and COX-2 obtained from PDB. The analysis showed that the anti-inflammatory activity and selectivity toward COX-2 of vanillyl methyl ketone was higher than eugenol. This was shown by the low binding energy affinity and the number of hydrogen bonds formed between the vanillyl methyl ketone and the active site of the enzyme. Keywords: eugenol, Wacker, vanillyl methyl ketone, antiinflammatory, in silico Pada penelitian ini dilakukan sintesis senyawa vanilil metil keton dari eugenol melalui oksidasi Wacker serta dilakukan uji aktivitas antiinflamasi terhadap enzim COX-1 dan COX-2 melalui analisis in silico. Proses oksidasi Wacker dikatalisis oleh PdCl2 dan CuCl2 menggunakan pelarut DMF dalam kondisi aerob pada suhu ruang selama 48 jam. Senyawa hasil sintesis dipisahkan menggunakan kolom kromatografi dan dikarakterisasi menggunakan spektroskopi NMR, IR dan MS. Hasil karakterisasi menunjukkan bahwa senyawa vanilil metil keton telah terbentuk dengan randemen sebanyak 45% dan juga dihasilkan senyawa vanillin (3%) sebagai produk samping. Aktivitas antiinflamasi senyawa vanilil metil keton dilakukan dengan docking molekuler terhadap enzim COX-1 dan COX-2 yang diperoleh dari PDB. Hasil analisis menunjukkan bahwa aktivitas antiinflamasi dan selektivitas terhadap COX-2 pada senyawa vanilil metil keton lebih tinggi dibandingkan eugenol. Hal ini ditunjukkan melalui rendahnya afinitas energi pengikatan dan banyaknya ikatan hidrogen yang terbentuk antara vanilil metil keton dengan sisi aktif enzim. Kata kunci : eugenol, Wacker, vanilil metil keton, antiinflamasi, in silico


2020 ◽  
Vol 11 ◽  
Author(s):  
Ji-Zhong Zhang ◽  
Xiao-Yi Chen ◽  
You-Jiao Wu ◽  
Li-Min Li ◽  
Li Huang ◽  
...  

The Yi nationality herbal formula Wosi is used in China as a folk medicine to treat arthritis and related diseases. Despite its widespread use, the active ingredients, and pharmacological mechanisms are not performed. This is the first time to identify the active compounds from Wosi with the aim at providing the potential effect of Wosi and exploring its underlying anti-inflammatory mechanism in monosodium urate crystals (MSU)-induced arthritis rats. In this study, anti-hyperuricemia effect was assessed by reducing the serum uric acid levels and increasing uric acid excretion in the urine for the hyperuricemia rat model. Wosi significantly suppressed the degree of joint swelling and improved the symptoms of inflammation induced by MSU crystals. The inhibition of IL-2, IL-1β, IFN-γ, and IL-6 secretion and IL-10 increase in the serum were also observed. This study also focuses on the screening of the main compounds from Wosi against cyclooxygenase for anti-inflammatory properties using molecular docking. The result showed 3-O-[α-L-pyran rhamnose(1-3)-β-D-pyran glucuronic acid]- oleanolic acid, 3-O-(β-D-pyran glucuronic acid)-oleanolic acid-28-O-β-D-pyran glucoside, and 3-O-[α-L-pyran rhamnose(1-3)-β-D-pyran glucuronic acid]-oleanolic acid-28-O-β-D-pyran glucoside with a higher binding affinity for COX-2 than COX-1 which indicated relatively higher interaction than COX-1. The preferential selectivity toward inhibiting COX-2 enzyme over COX-1 of three compounds from Wosi were evaluated using in-vitro cyclooxygenases 1 and 2 (COX-1/2) inhibition assays. Meanwhile, the down-regulated protein expression of COX-2 and VCAM-1 in synovial tissue sections from ankle joints of experiments rats were confirmed by immunohistochemistry analysis after the Wosi treatment. In conclusion, three oleanolic acid glycosides were implied as mainly efficient compounds in Yi nationality herbal formula Wosi for arthritis therapy via selectively influencing COX-2 and VCAM-1 signaling.


2020 ◽  
Vol 17 ◽  
Author(s):  
Deepak Kumar Singh ◽  
Mayank Kulshreshtha ◽  
Yogesh Kumar ◽  
Pooja A Chawla ◽  
Akash Ved ◽  
...  

Background: The pyrazolines give the reactions of aliphatic derivatives, resembling unsaturated compounds in their behavior towards permanganate and nascent hydrogen. This nucleus has been associated with various biological activities including inflammatory. Thiazolinone is a heterocyclic compound that contains both sulfur and nitrogen atom with a carbonyl group in their structure.Thiazolinone and their derivatives have attracted continuing interest because of their various biological activities, such as anti-inflammatory, antimicrobial, anti-proliferative, antiviral, anticonvulsant etc. The aim of the research was to club pyrazoline nucleus with thiazolinone in order to have significantanti-inflammatory activity. The synthesized compounds were chemically characterized for the establishment of their chemical structures and to evaluate as anti-inflammatory agent. Method: In the present work, eight derivatives of substituted pyrazoline (PT1-PT8) were synthesized by a three step reaction.The compounds were subjected to spectral analysis by Infrared, Mass and Nuclear magnetic resonance spectroscopy and elemental analysis data. All the synthesized were evaluated for their in vivo anti-inflammatory activity. The synthesized derivatives were evaluated for their affinity towards target COX-1 and COX-2, using indomethacin as the reference compound molecular docking visualization through AutoDock Vina. Results: Compounds PT-1, PT-3, PT-4 and PT-8 exhibited significant anti-inflammatory activity at 3rd hour being 50.7%, 54.3%, 52.3% and 57% respectively closer to that of the standard drug indomethacin (61.9%).From selected anti-inflammatory targets, the synthesized derivatives exhibited better interaction with COX-1 and COX-2 receptor, where indomethacin showed docking score of -6.5 kJ/mol, compound PT-1 exhibited highest docking score of -9.1 kJ/mol for COX-1 and compound PT-8 having docking score of 9.4 kJ/mol for COX-2. Conclusion: It was concluded that synthesized derivatives have more interaction with COX-2 receptors in comparison to the COX-1 receptors because the docking score with COX-2 receptors were very good. It is concluded that the synthesized derivatives (PT-1 to PT-8) are potent COX-2 inhibitors.


2021 ◽  
Vol 18 ◽  
Author(s):  
Roopal Mittal ◽  
Shailesh Sharma ◽  
Ajay Singh Kushwah

Background: Inflammation is the earliest body defence mechanism in which the immune system recognises and counters the antigens and aids in healing the disease. The World Health Organisation suggests that inflammation is one of the greatest causes of death in the world. Inflammation could be acute or chronic due to the release of inflammatory mediators i.e. prostaglandins, leukotrienes due to mitogens, antigens or cytokines found in the body. Methods: Bibliographic database using pub med cites for peer-reviewed research articles with titles containing dual COX-2 and 5-LOX enzyme inhibitors, heterocyclic moieties, with AND Boolean operator's terms since last ten years of literature work. The quality papers containing the natural or synthetic lead compounds were extracted; the detailed study and conceptual framework attracted its attention. Results: Out of 127 research and review articles evaluated, 54 articles were cited to provide high quality data regarding pharmacoactive molecules having anti-inflammatory activity via dual COX-2/5-LOX inhibition. In addition, highlighting their in silico and experimental wet laboratory studies in increasing order over the past decade with the best illustration of dual enzyme inhibitory activity. Conclusion: This review gathered details of isolated bioactive compounds such as pyrazole, coumaperine, indoles, phenanthrene derivatives that have been significantly reported for anti-inflammatory activities.


Author(s):  
Sarath Sasi Kumar ◽  
Anjali T

Objective: In silico design and molecular docking of 1,2-benzisoxazole derivatives for their analgesic and anti-inflammatory activity using computational methods.Methods: In silico molecular properties of 1,2-benzisoxazole derivatives were predicted using various software’s such as Chemsketch, Molinspiration, PASS and Schrodinger to select compounds having optimum drug-likeness, molecular descriptors resembling those of standard drugs and not violating the ‘Lipinski rule of 5’. Molecular docking was performed on active site of nicotinic acetylcholine receptor (PDB: 2KSR) for analgesic activity and COX-2 (PDB: 6COX) for anti-inflammatory activity using Schrodinger under maestro molecular modelling environment.Results: From the results of molecular docking studies of 1,2-benzisoxazole derivatives, all the compounds showed good binding interactions with Nicotinic acetylcholine receptor and COX-2. Compounds 4a and 4c showed highest binding scores (-7.46 and-7.21 respectively) with nicotinic acetylcholine receptor and exhibited maximum analgesic activity. Compound 4a showed highest binding score (-7.8) with COX-2 and exhibited maximum anti-inflammatory activity.Conclusion: All the derivatives of 1,2-benzisoxazole showed good analgesic and anti-inflammatory activity as predicted using molecular docking on respective receptors.


Author(s):  
Mustafa H. Ali Alsafi ◽  
Muthanna S. Farhan

Mefenamic acid (MA) is one of the non-steroidal anti-inflammatory drugs, it is widely used probably due to having both anti-inflammatory and analgesic activity, the main side effects of mefenamic acid include gastrointestinal tract (GIT) disturbance mainly diarrhea, peptic ulceration, and gastric bleeding. The analgesic effects of NSAIDs are probably linked to COX-2 inhibition, while COX-1 inhibition is the major cause of this classic adverse effects. Introduction of thiazolidinone may lead to the increase in the bulkiness leads to the preferential inhibition of COX-2 rather than COX-1 enzyme. The study aimed to synthesize derivatives of mefenamic acid with more potency and to decrease the drug's potential side effects, new series of 4-thiazolidinone derivatives of mefenamic acid were synthesized IVa-g. The synthetic procedures for target compounds and their intermediates are designed to be as follows: acylation of secondary amine of mefenamic acid by chloroacetylchloride to produce compound (I), then reaction between compound (I) and hydrazine hydrate to form hydrazine derivative of mefenamic acid (compound II). After that, Schiff base formation by addition of seven benzaldehyde derivatives and finally, cyclization in presence of thioglycolic acid to form 4-thiazolidinone heterocyclic ring. The characterization of the titled compounds has been established on the basis of their spectral FTIR, 1HNMR data, and by measurements of their physical properties. In vivo acute anti-inflammatory effect of the synthesized compounds was evaluated in rats using egg-white induced edema model of inflammation. The tested compounds and the reference drug produced significant reduction of paw edema with respect to the effect of dimethyl sulfoxide 10%v/v (control group). Compound IVe showed more potent effect than mefenamic acid at 240-300 min, while at time 300 min, compounds IVa and IVd exhibit more potent anti-inflammatory effect than mefenamic acid (50mg/kg, i.p.) as they reduced paw edema significantly more than mefenamic acid at mentioned intervals (p<0.05) . On the other hand compound IVc exhibited lower anti-inflammatory effect.


Sign in / Sign up

Export Citation Format

Share Document