scholarly journals The Mechanics Properties of Self-Compacting Concrete Using Red-Tile Waste as Substitution of Fine Aggregates

2017 ◽  
Vol 23 (2) ◽  
pp. 149
Author(s):  
Crezensia Alfiora Deadema Dias Octobenita ◽  
Ade Lisantono

This paper presents the experimental program about the mechanics properties of Self-Compacting Concrete (SCC) using red-tile waste as substitution of fine aggregates. The proportion of red-tile waste substitution was 10 %; 20 %; 30; 40 %; and 50 % of fine aggregates by weight. Viscocrete-10 was used to maintain the workability and flowability of SCC. 72 cylinder specimens with the size of (150×300) mm and 18 beam specimens with the size of (100×100×500) mm were cast and tested in this study. The mechanics properties of SCC that were studied in this research were compressive strength, modulus of elasticity, and modulus of rupture. The compressive strength of SCC was tested at age 7; 14; and 28 days. While the modulus of elasticity and modulus of rupture of SCC were tested only at age 28 days. The result shows that the maximum compressive strength of SCC was obtained using red-tile waste with the proportion of 50 % as substitution of fine aggregates. The compressive strength of SCC using red-tile with the proportion of 50 % at age 7; 14; and 28 days were 64.746 MPa;, 65.564 MPa; and 71.940 MPa, respectively. While the maximum modulus of elasticity and modulus of rupture of SCC were obtained using red-tile with the proportion 50 % at age 28 days, and the modulus elasticity and modulus of rupture were 25863.192 MPa and 7.076 MPa, respectively.

Materials ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1035 ◽  
Author(s):  
Afsaneh Valizadeh ◽  
Farhad Aslani ◽  
Zohaib Asif ◽  
Matt Roso

Heavyweight self-compacting concrete (HWSCC) and heavyweight geopolymer concrete (HWGC) are new types of concrete that integrate the advantages of heavyweight concrete (HWC) with self-compacting concrete (SCC) and geopolymer concrete (GC), respectively. The replacement of natural coarse aggregates with magnetite aggregates in control SCC and control GC at volume ratios of 50%, 75%, and 100% was considered in this study to obtain heavyweight concrete classifications, according to British standards, which provide proper protection from sources that emit harmful radiations in medical and nuclear industries and may also be used in many offshore structures. The main aim of this study is to examine the fresh and mechanical properties of both types of mixes. The experimental program investigates the fresh properties of HWSCC and HWGC through the slump flow test. However, J-ring tests were only conducted for HWSCC mixes to ensure the flow requirements in order to achieve self-compacting properties. Moreover, the mechanical properties of both type of mixes were investigated after 7 and 28 days curing at an ambient temperature. The standard 100 × 200 mm cylinders were subjected to compressive and tensile tests. Furthermore, the flexural strength were examined by testing 450 × 100 × 100 mm prisms under four-point loading. The flexural load-displacement relationship for all mixes were also investigated. The results indicated that the maximum compressive strength of 53.54 MPa was achieved by using the control SCC mix after 28 days. However, in HWGC mixes, the maximum compressive strength of 31.31 MPa was achieved by 25% magnetite replacement samples. The overall result shows the strength of HWSCC decreases by increasing magnetite aggregate proportions, while, in HWGC mixes, the compressive strength increased with 50% magnetite replacement followed by a decrease in strength by 75% and 100% magnetite replacements. The maximum densities of 2901 and 2896 kg/m3 were obtained by 100% magnetite replacements in HWSCC and HWGC, respectively.


2018 ◽  
Vol 25 (5) ◽  
pp. 927-937 ◽  
Author(s):  
Khuram Rashid ◽  
Sana Nazir

AbstractConservation of natural resources, healthy environments, and optimal utilization of waste materials are intimate needs of the present time, and this research work was carried out to fulfill these needs. In this experimental and analytical study, concrete was prepared by replacing natural fine aggregates with two types of used foundry sands by 10%, 20% and 30% (by volume). The properties of fresh and hardened concrete were investigated and compared with a replacement amount of fine aggregates from 0% to 30%. Compressive strength was evaluated after 7, 28 and 63 days of moist curing. Along with compressive strength, the modulus of elasticity was also investigated and a reduction in compressive strength and modulus of elasticity was observed with the increase in the amount of used foundry sand. A prediction formula was proposed to predict the compressive strength, and verified by current experimental observations and also with a large database that was also established in this work. The prediction formula may be considered as very helpful for predicting the potential of using used foundry sand as an aggregate in concrete.


2014 ◽  
Vol 1054 ◽  
pp. 128-131
Author(s):  
Klára Křížová ◽  
Petr Novosad ◽  
Denisa Orsáková

The paper presents obtained results of self-compacting concretes with various compositions with focus on basic characteristics development. Firstly the fresh concrete properties are summed and self-compactness classes are categorised and subsequently the values of compressive strength, static and dynamic modulus of elasticity of hardened concretes are compared. All the stated parameters were monitored during different ages of the concrete and therefore they provide a view of its development in time. With still enlarging scale of concrete types and development of their application it is necessary to monitor common parameters which due to the application of new concepts in raw material compositions and use of higher amounts of additives may notably differ compared to applied orthodox concrete parameters.


2016 ◽  
Vol 845 ◽  
pp. 226-230
Author(s):  
Akhmad Suryadi ◽  
Qomariah ◽  
M. Sarosa

An experimental program was undertaken to evaluate the compressive strength of self-compacting concrete using commercial mathematic program. Sample variation was monitored using an experimental cylinder of concrete measuring 150 mm in diameter and 300 mm in height. This research examined various mixture designs in the laboratory tests with the goal of creating mixtures with desirable flow specification that did not require additional vibration yet provided adequate compressive strength. After 28 days, compressive strength of cylinder concrete determination, a model of Artificial Neural Networks (ANNs) was designed for this research and the results were obtained in this model of ANN. Both experimental tests and mix design program data was analyzed with statistical packet software. The result of statistical analysis has been done in 98.54 percent of confidence interval. It has been seen that the ANN can be used as reliable modelling method for similar experiment.


Author(s):  
Sri Hartati Dewi ◽  
Roza Mildawati ◽  
Tio Perdana

Concrete is a very important building material used in the world of construction services, and it is generally known that the good and bad properties of concrete can be seen from its compressive strength. Concrete consists of Portland Cement (PC) or other hydraulic cement, fine aggregates, coarse aggregates, and water, with or without using additional materials. Cement is one of the main mixtures of concrete constituents composed of natural resources such as lime (CaO), Silica (SiO₃), alumina (Al2O₃), little magnesia (MgO), and alkali. Silica is also found in corn. according to (Roesmarkam and Yuwono, 2002) corn plants have a Silica content of 20.6%. This study aims to determine the effect of utilization of corn stalk ash on compressive strength and modulus of elasticity of concrete. Cornstalk ash is used as a partial substitute for cement, with a mixture composition of 2%, 4%, 6%, 8%, and 10%. This study uses SNI 03-2834-2000 for mix design, with the added ingredient of 0.25% sikament NN. Cylindrical test specimen size (150 mm x 300 mm), the specimen was treated and tested at 28 days. Based on research using corn stalk ash 2%, 4%, 6%, 8%, and 10%. either without or using sikament NN the highest compressive strength at 8% is 20.8 Mpa and 20.4 Mpa, and decrease in usage of 10% corn stalk ash which is 18.2 Mpa and 18, 4 Mpa. The highest elastic modulus without or with sikament NN present in 8% ie 21656.14 Mpa and 21607.52 MPa. Modulus of Elasticity value decreased in the use of corn stalks 10% ash is 20366.28 Mpa and 20569.59 MPa. Based on the research, corn stalk ash can replace the role of part of cement in construction using corn stalk ash 8%.


2020 ◽  
Vol 16 (1) ◽  
pp. 60-77
Author(s):  
Antonio Rodrigues Pantoja Junior ◽  
Marcelo Picanço

RESUMO: Avaliou-se a substituição da brita basáltica existente no concreto por material alternativo em abundância no município de Santarém-PA: a laterita. Foi avaliado o desempenho do concreto incorporado com agregado laterítico in natura em substituição parcial ao agregado graúdo de brita basáltica nos teores de 20% e 50%. Realizou-se a caracterização dos agregados graúdo e miúdo. De acordo com o método da ABCP, determinou-se o traço de referência em massa 1:1,71:3,03:0,53; confeccionou-se corpos-de-prova cilíndricos 10x20 cm utilizando 3 traços diferentes, de modo a substituir a brita basáltica pelo agregado laterítico, em 20% e 50%. Para cada traço foram quantificados a sua consistência, por meio do ensaio de abatimento do tronco de cone, resistência à compressão axial, resistência à tração por compressão diametral e módulo de elasticidade aos 28 dias. A substituição do agregado convencional de brita basáltica por agregado laterítico em seu estado natural promoveu diminuição da resistência a compressão simples, da resistência à tração por compressão diametral e do módulo de elasticidade com a inclusão do agregado laterítico na mistura. Destaca-se que acima de determinado teor de substituição o concreto torna-se inviável devido a necessidade de adicionar aditivo plastificante para manter a consistência desejada e que as duas misturas incorporadas com agregado laterítico se mostraram muito semelhantes após os 28 dias, no que tange a ganhos de resistência a compressão. ABSTRACT: This study is about the replacement of basaltic origin crushed stone by alternative material present in the municipality of Santarém, Pará State: the laterite. The aim were to evaluate the performance of concrete incorporated with natural lateritic aggregate, replacing the of crushed stone in 20% and 50%. The first stage was characterizing the coarse and fine aggregates that made up the studied concrete. According to ABCP dosing method it was determined the mass reference trait 1: 1.71: 3.03: 0.53; bodies of 10x20 cm were made for cylindrical test, using three different strokes so that the basaltic crushed stone gradually replaced by the lateritic aggregate in proportions of 20% and 50%. For each trait its consistency was quantified by means of the tapering test, axial compression strength, diametric compression tensile strength and the modulus of elasticity at 28 days. Was observed that the replacement of the conventional aggregate basalt crushed stone for aggregate of laterite in natural state promoted a decrease in the value of simple compressive strength, diametric tensile strength and modulus of elasticity with inclusion of a larger amount of lateritic aggregate in the mixture. It is noteworthy that above a certain substitution content, the concrete becomes not feasible due to the need for a large increase in the amount of plasticizer additive to the desired consistency is maintained and the two blends incorporated with lateritic showed very similar after 28 days in terms of gains in compressive strength.


2020 ◽  
Vol XVII (3) ◽  
pp. 1-14
Author(s):  
Leila Shahryari ◽  
Maryam Nafisinia ◽  
Mohammad Hadi Fattahi

The effects of simultaneous use of recycled aggregates and ground blast furnace slag as a percentage of cement-constituting materials on different properties of fresh self-compacting concrete (SCC) are investigated in this study. To this end, three series of SCC mixtures with a fixed volume of cement paste equalling 380 ltr/m3 (2.36 gal/ft3) and the replacement ratio of coarse aggregates (fifty percent and one hundred percent) and total aggregates (zero percent, fifty percent and one hundred percent) were prepared. The water content ratios in the first, second and third series were 0.4, 0.45, and 0.5, respectively. The results of the compressive strength tests for 7-day, 14-day and 28-day cubic specimens and compressive strength and Brazilian test results for 28-day cylindrical specimens were used as control parameters governing the SCC resistive quality. The results of fresh SCC tests (including slump-flow and T50 tests, V-funnel test, and L-box test) showed that the negative effect of recycled fine aggregates on fresh SCC properties is significantly more than that of recycled coarse aggregate. However, recycled SCC with acceptable properties can be obtained with a slight increase in the amount of superplasticisers used in the presence of slag.


2019 ◽  
Vol 28 ◽  
pp. 096369351988512 ◽  
Author(s):  
Yunyang Wang ◽  
Bingchen Zhao ◽  
Guang Yang ◽  
Yandong Jia ◽  
Lijun Yang ◽  
...  

The effect of recycled coarse aggregate (RCA) on the fresh and hardened properties of C40 self-compacting concrete (SCC) was investigated in this paper. The slump, T 500 (the time needed for SCC to spread into a round configuration with a nominal diameter of 500 mm), the slump flow and the flow time of fresh C40 SCC as well as the compressive strength and modulus of elasticity of hardened C40 SCC were studied. The modulus of elasticity of C40 SCC was calculated by theoretical formula, and the calculated values were compared with the experimental values. Mechanisms that effect on the C40 SCC properties at fresh and hardened states were also explored. The experimental results showed that the slump values of the C40 SCC are beyond 250 mm. The C40 SCC with RCA replacement content of 50% showed the highest slump value of 275 mm. All T 500 values of the C40 SCC are within 5 s. The slump flow of the C40 SCC slightly increases with the increase of replacement content of the RCA. In contrast, the compressive strength and modulus of elasticity of the C40 SCC slightly decrease with the increase of replacement content. The experimental values of modulus of elasticity are lower than that of the calculated values. Submerged in water before mixing of RCA leading to the slump flow of the C40 SCC increases with the increasing replacement content of the RCA. The old cement mortar attached to the RCA surface is the main reason that weakens the mechanical properties. The lower amount of coarse aggregate and the higher amount of cement paste attribute to the lower values of modulus of elasticity. This study implied that RCA can be effectively used in the production of C40 SCC without any significant sacrifice on workability and mechanical properties.


Materials ◽  
2019 ◽  
Vol 12 (5) ◽  
pp. 822 ◽  
Author(s):  
Farhad Aslani ◽  
Fatemeh Hamidi ◽  
Qilong Ma

In this study, the fresh and hardened state properties of heavyweight self-compacting concrete (HWSCC) and heavyweight high strength concrete (HWHSC) containing heavyweight magnetite aggregate with 50, 75, and 100% replacement ratio, and their performance at elevated temperatures were explored experimentally. For fresh-state properties, the flowability and passing ability of HWSCCs were assessed by using slump flow, T500 mm, and J-ring tests. Hardened-state properties including hardened density, compressive strength, and modulus of elasticity were evaluated after 28 days of mixing. High-temperature tests were also performed to study the mass loss, spalling of HWSCC and HWHSC, and residual mechanical properties at 100, 300, 600 and 900 °C with a heating rate of 5 °C/min. Ultimately, by using the experimental data, rational numerical models were established to predict the compressive strength and modulus of elasticity of HWSCC at elevated temperatures. The results of the flowability and passing ability revealed that the addition of magnetite aggregate would not deteriorate the workability of HWSCCs and they retained their self-compacting characteristics. Based on the hardened densities, only self-compacting concrete (SCC) with 100% magnetite content, and high strength concrete (HSC) with 75 and 100% magnetite aggregate can be considered as HWC. For both the compressive strength and elastic modulus, decreasing trends were observed by introducing magnetite aggregate to SCC and HSC at an ambient temperature. Mass loss and spalling evaluations showed severe crack propagation for SCC without magnetite aggregate while SCCs containing magnetite aggregate preserved up to 900 °C. Nevertheless, the mass loss of SCCs containing 75 and 100% magnetite content were higher than that of SCC without magnetite. Due to the pressure build-up, HSCs with and without magnetite showed explosive spalling at high temperatures. The residual mechanical properties analysis indicated that the highest retention of the compressive strength and modulus of elasticity after exposure to elevated temperatures belonged to HWSCC with 100% magnetite content.


Sign in / Sign up

Export Citation Format

Share Document