magnetite content
Recently Published Documents


TOTAL DOCUMENTS

34
(FIVE YEARS 7)

H-INDEX

10
(FIVE YEARS 1)

Minerals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 927
Author(s):  
Eliana Pecini ◽  
Marcelo Avena

This work reports the behavior of montmorillonite–magnetite mixtures of varying composition in aqueous dispersions and evaluates their adsorbing properties using a cationic organic pollutant, methylene blue (MB+), and an anionic inorganic pollutant, arsenate (As(V)), as the adsorbing species. The effects of the presence of montmorillonite on the As(V) adsorption by magnetite and the effects of magnetite on the MB+ adsorption by the clay were specially addressed. The simple mixture of a montmorillonite dispersion with a magnetite dispersion led to the spontaneous formation of montmorillonite–magnetite co-aggregates. These co-aggregates showed a unimodal electrophoretic mobility distribution, with no evidence of the presence of separate populations of montmorillonite or magnetite. The application of a magnetic field confirmed the formation of co-aggregates and showed that their separation rate increased as the magnetite content increased. Adsorption studies as a function of the aggregate composition demonstrated that MB+ uptake was mainly controlled by the content of montmorillonite, while As(V) adsorption was mainly controlled by the content of Fe3O4. This permits an easy tuning of the adsorbing properties of cations and anions by controlling the composition of the system.


Author(s):  
Bo Wang ◽  
Xiaochen Zhang ◽  
Yuanhao Zhao ◽  
Mei Zhang ◽  
Jia Jia

The characteristics of spatial-temporal distribution and sources for multiple environmental carriers (surface soil, soil profiles, atmospheric dustfall) from the typical industrial city of Baiyin in Northwestern China were studied by means of environmental magnetism. This study aims to contribute to the potential application of magnetic measurements in the case of multiple environmental carriers, for the evaluation and differentiation of urban pollution sources. Results show that background magnetic susceptibility of soil is 37 × 10−8 m3 kg−1, and that magnetite and hematite carry the magnetic properties. However, magnetic properties of urban soil and atmospheric dustfall are dominated by PSD magnetite. Magnetite content in soil samples is anomalously high surrounding metallurgical plant and slag dump (major industry district), of moderate value in the center of the city (major commercial district), and of low value in the west of city (Baiyin new zone). Vertical distribution of magnetite content in soil profile of waste land suggests that the pollutants are mostly enriched in the top 0–2 cm soil layers, while planting of crops near the industrial area may accelerate the transfer of contaminants deeper in the soil (2–30 cm); accordingly, reducing detrimental soil tillage practices can alleviate the vertical migration of pollution. Measurements of magnetic variations of atmospheric dustfall indicate that industrial emissions by factory chimneys and blowing dust from slag heap and mineral transport control the magnetic properties of dust, with slag heaps being the main pollution source since 2014. Governance of slag pollution is a primary task in resource-exhausted urban contexts. The combination of several magnetic parameters arising from multiple environmental carriers, such as soil and atmospheric dustfall, can provide comprehensive spatio-temporal information on environmental pollution.


2020 ◽  
Vol 113 (1) ◽  
Author(s):  
Elias D. Kempf ◽  
Jörg Hermann ◽  
Eric Reusser ◽  
Lukas P. Baumgartner ◽  
Pierre Lanari

AbstractMetamorphic olivine formed by the reaction of antigorite + brucite is widespread in serpentinites that crop out in glacier-polished outcrops at the Unterer Theodulglacier, Zermatt. Olivine overgrows a relic magnetite mesh texture formed during ocean floor serpentinization. Serpentinization is associated with rodingitisation of mafic dykes. Metamorphic olivine coexists with magnetite, shows high Mg# of 94–97 and low trace element contents. A notable exception is 4 µg/g Boron (> 10 times primitive mantle), introduced during seafloor alteration and retained in metamorphic olivine. Olivine incorporated 100–140 µg/g H2O in Si-vacancies, providing evidence for low SiO2-activity imposed by brucite during olivine growth. No signs for hydrogen loss or major and minor element diffusional equilibration are observed. The occurrence of olivine in patches within the serpentinite mimics the former heterogeneous distribution of brucite, whereas the network of olivine-bearing veins and shear zones document the pathways of the escaping fluid produced by the olivine forming reaction. Relic Cr-spinels have a high Cr# of 0.5 and the serpentinites display little or no clinopyroxene, indicating that they derive from hydrated harzburgitic mantle that underwent significant melt depletion. The enrichment of Mg and depletion of Si results in the formation of brucite during seafloor alteration, a pre-requisite for later subduction-related olivine formation and fluid liberation. The comparison of calculated bulk rock brucite contents in the Zermatt-Saas with average IODP serpentinites suggests a large variation in fluid release during olivine formation. Between 3.4 and 7.2 wt% H2O is released depending on the magnetite content in fully serpentinized harzburgites (average oceanic serpentinites). Thermodynamic modelling indicates that the fluid release in Zermatt occurred between 480 °C and 550 °C at 2–2.5 GPa with the Mg# of olivine varying from 68 to 95. However, the majority of the fluid released from this reaction was produced within a narrow temperature field of < 30 °C, at higher pressures 2.5 GPa and temperatures 550–600 °C than commonly thought. Fluids derived from the antigorite + brucite reaction might thus trigger eclogite facies equilibration in associated metabasalts, meta-gabbros, meta-rodingites and meta-sediments in the area. This focused fluid release has the potential to trigger intermediate depths earthquakes at 60–80 km in subducted oceanic lithosphere.


Materials ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3086
Author(s):  
Andra Mihaela Predescu ◽  
Ruxandra Vidu ◽  
Petrică Vizureanu ◽  
Andrei Predescu ◽  
Ecaterina Matei ◽  
...  

Copper matrix nanocomposites reinforced with magnetite nanoparticles were developed using powder metallurgy. Various processing parameters were taken into consideration, such as magnetite content, compaction pressure, sintering time and temperature. The nanopowder blends were compacted using various uniaxial pressures and sintered at 650 and 800 °C in order to study the influence of processing parameters on morphology, structure, thermal, magnetic and mechanical properties. The structure and morphology of the nanocomposites analyzed by X-ray diffraction (XRD), bright field transmission electron microscopy (TEMBF) and scanning electron microscopy (SEM) showed that sintered composites retained the nanoscale characteristics of the initial Fe3O4 and Cu nanopowders. These nanocomposites have good cold-rolling deformability and Vickers micro-hardness. The Cu-xFe3O4 nanocomposites have thermal and magnetic properties that make them suitable for electronical applications.


Materials ◽  
2019 ◽  
Vol 12 (5) ◽  
pp. 822 ◽  
Author(s):  
Farhad Aslani ◽  
Fatemeh Hamidi ◽  
Qilong Ma

In this study, the fresh and hardened state properties of heavyweight self-compacting concrete (HWSCC) and heavyweight high strength concrete (HWHSC) containing heavyweight magnetite aggregate with 50, 75, and 100% replacement ratio, and their performance at elevated temperatures were explored experimentally. For fresh-state properties, the flowability and passing ability of HWSCCs were assessed by using slump flow, T500 mm, and J-ring tests. Hardened-state properties including hardened density, compressive strength, and modulus of elasticity were evaluated after 28 days of mixing. High-temperature tests were also performed to study the mass loss, spalling of HWSCC and HWHSC, and residual mechanical properties at 100, 300, 600 and 900 °C with a heating rate of 5 °C/min. Ultimately, by using the experimental data, rational numerical models were established to predict the compressive strength and modulus of elasticity of HWSCC at elevated temperatures. The results of the flowability and passing ability revealed that the addition of magnetite aggregate would not deteriorate the workability of HWSCCs and they retained their self-compacting characteristics. Based on the hardened densities, only self-compacting concrete (SCC) with 100% magnetite content, and high strength concrete (HSC) with 75 and 100% magnetite aggregate can be considered as HWC. For both the compressive strength and elastic modulus, decreasing trends were observed by introducing magnetite aggregate to SCC and HSC at an ambient temperature. Mass loss and spalling evaluations showed severe crack propagation for SCC without magnetite aggregate while SCCs containing magnetite aggregate preserved up to 900 °C. Nevertheless, the mass loss of SCCs containing 75 and 100% magnetite content were higher than that of SCC without magnetite. Due to the pressure build-up, HSCs with and without magnetite showed explosive spalling at high temperatures. The residual mechanical properties analysis indicated that the highest retention of the compressive strength and modulus of elasticity after exposure to elevated temperatures belonged to HWSCC with 100% magnetite content.


Author(s):  
V. V. Bakhterev

The temperature dependences of electrical resistance (at DC and AC voltage at 1 kHz frequency) of the samples of the magnetite ore and magnetite from the contact of the syenite-porphyry with the volcanic-sedimentary rocks from the Goroblagodatskoye iron-ore deposit in the temperature range 20—800 °C have been studied. The frequency dependences of the active electrical resistance and dielectric losses in the range 0,01—100 kHz have been obtained at 20 °C. For the magnetite ore and magnetite from the syenite-porphyry contact with volcanogenic sedimentary rocks in the studied temperature and frequency ranges, the relationship between electrical resistance (lgR) and dielectric losses (lgtgδ) has been revealed. The character of the relations is different, that allows to separate uniquely the magnetite ore and magnetite. The parameters of high-temperature conductivity (activation energy Eoand electrical resistance coefficient lgRo)nave been obtained. The parameters of the studied samples of pyroxene-orthoclase-magnetite, garnet-magnetite, epidote-chlorite-magnetite ores form a straight line, as if forming its different parts. The correlation between the parameters of E0and lgRo, samples of these ores has the following form: lgRo, — 2,2—6,6 Eo. The parameters of magnetite samples from the contact of syenite porphyry with volcanogenic-sedimentary rocks also form a straight line, as if forming its different parts, with the correlation form as following: lgRo— 2,1—6,6 E0. It has been found that with the increasing distance to the syenite intrusion, the electrical parameters of magnetite ore change: EQ increases, lgRo, decreases. For magnetite from the contact of the syenite-porphyry and volcanic-sedimentary rocks there is another picture — the further you are from the syenite-porphyries, the smaller E0is, and the bigger the lgRo, is. The T0temperatures, at which the electrical resistance at the constant voltage becomes equal to the active resistance at the alternating voltage for the samples of garnet-magnetite ore with the different magnetite content, P,%, have been revealed. The correlation between the T0 parameter and the magnetite content in the ore, P(Fe304, %) = 323,4 — 47,4 ln( T0), R2= = 0,93, has been established.


2018 ◽  
Vol 25 (4) ◽  
pp. 795-804
Author(s):  
Hossein Inanloo Arabi Shad ◽  
F Sereshki ◽  
M Ataei ◽  
M Karamoozian

2017 ◽  
Vol 14 (2) ◽  
Author(s):  
Mohammad Akrom Mustafa ◽  
Deny Setiady ◽  
Udaya Kamiludin

Pasirbesi (magnetit) merupakan salah satu hasil pelapukan batuan di daratan dan abrasi pantai oleh pemusatan gelombang dan arus sejajar pantai. Tujuan penelitian menentukan keterdapatan pasirbesi di sekitar Pantai, Kepulauan Talaud, Sulawesi Utara. Metode penelitian meliputi karakteristik pantai, pemercontohan sedimen, analisis megaskopis dan mineral butir disertai fotomikrograf. Tipologi  Pantai Beo terdiri dari pantai berkantong pasir dan berbatuan. Endapan Magnetit umumnya  menempati pantai berkantong pasir yang sebagian membentuk tanggul gisik. Kadar persentase magnetit (% Fe) antara 0.139 % - 38.11 %.  Anomali magnetit dengan kadar kisaran antara   21,414 %  dan  38,106  %  dijumpai  di Pantai Beo, Maririka dan Pantai Batumbalango. Lingkungan keterdapatan magnetit dipengaruhi oleh aktivitas pergerakan tektonik aktif Resen yaitu terangkatnya terumbu karang. Genesa magnetit  terkonsentrasi  oleh media cair bergerak sebagai endapan plaser pantai yang dipengaruhi oleh fluviatil. Keterdapatan Magnetit  diduga berasal dari Batuan Gunungapi Pampini, batuan campuraduk Bancuh Karakelang dan  Batuan Ultramafik Kabaruang.Kata Kunci : Magnetit, Karaktersitik pantai, aktivitas tektonik, endapan plaser, sumber batuan, Pantai Beo.Ironsand (magnetite) is one of the mineral potential in some coastal areas of Indonesia, which is related to the presence of andesitic-ultramafic rocks. Therefore Beo coast and its vicinity are then selected as the object of investigation. Magnetite is accumulated as the alochton deposit as the product of rocks weathering in land and coastal abrasion processes are formed by waves and currents parallel to the coast. The methods of investigation include coastal characteristics mapping, positioning, sediment sampling, megascopic and grain minerals analysis with photomicrograph. Coastal characteristics of Beo consist of pocket beach and rocks. Magnetite deposits are usually occupies a pocket beach which is partially formed Berm. The percentage of magnetite content ranging from 0.139% - 38.11%.  Anomalies magnetite grading between 21,414 %  dan  38,106 %  found in Beo, Maririka and the Batumbalango Beach. Magnetite environment is impacted by tectonic movements active in Resen vertically namely the lifting of coral reefs. Magnetite is concentrated on the formation of moving liquid media as placer beach types affected fluvial. The presence of magnetite supposed to be derived from Pampini Volcanics,  and mixture of heterogenous rocks Karakelang Melange and Kabaruang Ultramafics. Keywords: Magnetite, coastal characteristics, tectonic activity, placer deposits, source rocks, Beo Beachs


2017 ◽  
Vol 14 (2) ◽  
pp. 99
Author(s):  
Danlie Jiang ◽  
Xialin Hu ◽  
Rui Wang ◽  
Yujing Wang ◽  
Daqiang Yin

Environmental contextNanoscale zero-valent iron is a promising material for environmental engineering and groundwater remediation. However, the environmental behaviour and fate of nanoscale iron that is essential for applications and risk assessment is still uncertain. We report a study on the aggregation behaviour and mobility of nanoscale iron in the aquatic environment using colloidal chemical methods. AbstractDespite high magnetisation, nanoscale zero-valent iron (nZVI) exhibits weak aggregation when treating hexavalent chromium (CrVI) (0.02mmol L–1) under anaerobic circumstances, which leads to the enhancement of its mobility in the aquatic environment. To elucidate such an unexpected phenomenon, the influences of different valences of chromium on the aggregation behaviour of nZVI were examined. Results indicate that trivalent chromium (CrIII) greatly decreases the aggregation of nZVI in acidic conditions (pH 5), while little influence is observed at a higher pH (pH 7). We suggest that such influences are mainly a result of precipitation on the surface of nZVI particles, which prevents the formation of chain-like aggregates. Accordingly, although the particles are highly magnetic (magnetite content >70%, saturation magnetisation=363 kA m–1), the magnetic attraction between aggregates and particles is not strong enough to promote further aggregation. Furthermore, the Cr(OH)3 shell blocks collisions between particles and greatly enhances their zeta-potential, which also assists in preventing aggregation. Our results suggest that heavy metals can significantly affect the environmental behaviours of nanoparticles.


Sign in / Sign up

Export Citation Format

Share Document