scholarly journals The Benefits of Adding Corn Stalk Ash as a Substitution of Some Cement Against of Compressive Strength Concrete

Author(s):  
Sri Hartati Dewi ◽  
Roza Mildawati ◽  
Tio Perdana

Concrete is a very important building material used in the world of construction services, and it is generally known that the good and bad properties of concrete can be seen from its compressive strength. Concrete consists of Portland Cement (PC) or other hydraulic cement, fine aggregates, coarse aggregates, and water, with or without using additional materials. Cement is one of the main mixtures of concrete constituents composed of natural resources such as lime (CaO), Silica (SiO₃), alumina (Al2O₃), little magnesia (MgO), and alkali. Silica is also found in corn. according to (Roesmarkam and Yuwono, 2002) corn plants have a Silica content of 20.6%. This study aims to determine the effect of utilization of corn stalk ash on compressive strength and modulus of elasticity of concrete. Cornstalk ash is used as a partial substitute for cement, with a mixture composition of 2%, 4%, 6%, 8%, and 10%. This study uses SNI 03-2834-2000 for mix design, with the added ingredient of 0.25% sikament NN. Cylindrical test specimen size (150 mm x 300 mm), the specimen was treated and tested at 28 days. Based on research using corn stalk ash 2%, 4%, 6%, 8%, and 10%. either without or using sikament NN the highest compressive strength at 8% is 20.8 Mpa and 20.4 Mpa, and decrease in usage of 10% corn stalk ash which is 18.2 Mpa and 18, 4 Mpa. The highest elastic modulus without or with sikament NN present in 8% ie 21656.14 Mpa and 21607.52 MPa. Modulus of Elasticity value decreased in the use of corn stalks 10% ash is 20366.28 Mpa and 20569.59 MPa. Based on the research, corn stalk ash can replace the role of part of cement in construction using corn stalk ash 8%.

2018 ◽  
Vol 18 (1) ◽  
pp. 49-58
Author(s):  
Roza Mildawati

[ID] Concrete is a very popular building material used in the world of construction services, consisting of a mixture of Portland Cement (PC) or other hydraulic cement, fine aggregates, coarse aggregates and water, with or without using additional materials. The quality of materials such as cement also greatly affects the strength of the concrete after hardening, so the selection of cement quality must be in accordance with the concrete planning regulations in order to obtain optimal results. In Indonesia there are many new cement factories that produce to meet the needs of the community, one of which is the Conch brand cement. So in connection with the above, Conch cement can be examined to compare the value of compressive strength and flexural strength with old cement, namely cement Padang, Tiga Roda, Holcim and Bosowa which are generally always used in concrete planning at this time.The purpose of this study was to determine the comparison of compressive strength and flexural strength of the concrete and the multiplier between cement Padang, Three Wheels and Conch at 28 days of age. In this study using the method SNI 03-2834-2000. With cylindrical test specimens (150 mm x 300 mm) and size beams (150 mm x 150 mm x 600 mm) three specimens were made for each cement.The maximum concrete compressive strength is found in Padang cement with a compressive strength of 45.86 Mpa, for the minimum compressive strength found in Tiga Roda cement with compressive strength value of 40.19 Mpa and for the compressive strength of cement Conch there is a second with compressive strength value 42.84 Mpa. From the explanation above, the results of 28 days of concrete compressive strength with each cement brand still not reached the planned concrete compressive strength of 38 MPa. The maximum concrete flexural strength is found in Padang cement with a flexural strength value of 5.03 Mpa, for a minimum flexural strength value found in Tiga Roda cement with a flexural strength value of 3.96 Mpa and for the value of Conch cement compressive strength there is a second with flexural strength 4.43 Mpa. From the explanation above, the results of 28 days of concrete flexural strength with each cement brand that has not reached the 4.4 Mpa plan, namely the three-wheeled cement brand. [EN] Concrete is a very popular building material used in the world of construction services, consisting of a mixture of Portland Cement (PC) or other hydraulic cement, fine aggregates, coarse aggregates and water, with or without using additional materials. The quality of materials such as cement also greatly affects the strength of the concrete after hardening, so the selection of cement quality must be in accordance with the concrete planning regulations in order to obtain optimal results. In Indonesia there are many new cement factories that produce to meet the needs of the community, one of which is the Conch brand cement. So in connection with the above, Conch cement can be examined to compare the value of compressive strength and flexural strength with old cement, namely cement Padang, Tiga Roda, Holcim and Bosowa which are generally always used in concrete planning at this time.The purpose of this study was to determine the comparison of compressive strength and flexural strength of the concrete and the multiplier between cement Padang, Three Wheels and Conch at 28 days of age. In this study using the method SNI 03-2834-2000. With cylindrical test specimens (150 mm x 300 mm) and size beams (150 mm x 150 mm x 600 mm) three specimens were made for each cement.The maximum concrete compressive strength is found in Padang cement with a compressive strength of 45.86 Mpa, for the minimum compressive strength found in Tiga Roda cement with compressive strength value of 40.19 Mpa and for the compressive strength of cement Conch there is a second with compressive strength value 42.84 Mpa. From the explanation above, the results of 28 days of concrete compressive strength with each cement brand still not reached the planned concrete compressive strength of 38 MPa. The maximum concrete flexural strength is found in Padang cement with a flexural strength value of 5.03 Mpa, for a minimum flexural strength value found in Tiga Roda cement with a flexural strength value of 3.96 Mpa and for the value of Conch cement compressive strength there is a second with flexural strength 4.43 Mpa. From the explanation above, the results of 28 days of concrete flexural strength with each cement brand that has not reached the 4.4 Mpa plan, namely the three-wheeled cement brand.


2020 ◽  
Vol 6 (4) ◽  
pp. 462-471

Abstract: The composition of the concrete mixture determines the compressive strength. Concrete mixtures generally consist of cement, water, coarse aggregates, fine aggregates, and concrete drugs. In this study, it will be tried to mix stone ash and coconut fibers. The purpose of this study is to find out the concrete compressive strength with add stone ash and coconut fibers to normal concrete. Data was collected through laboratory tests by carrying out an additional mixture of stone ash and coconut fibers. There were six types of specimens produced which were measured for 7, 14, 21, and 28 days. Variation of specimens 1) normal concrete, 2) normal concrete + stone ash, 3) normal concrete + coconut fiber (1.5%), 4) normal concrete + stone ash and coconut fiber (1.5%), 5) normal concrete + stone ash and 1% coconut fiber, 6) normal concrete + 1% coconut fiber. From the results of testing the concrete compressive strength was obtained 455 kg/cm2 for the age of concrete for 28 days with a mixture of normal concrete + stone ash.


Author(s):  
Sunir Hassan ◽  
C. Lakshmana Rao ◽  
K. Ganesh Babu

Fiber reinforced concrete has been identified as a particulate composite consisting of hardened cement paste, fine aggregates, coarse aggregates, particulate fibers etc. and each constituent plays a significant role in the combined quasi brittle behaviour of the material. From the view point of a numerical modeler, a two phase model consisting of a matrix phase and a coarse aggregate phase is simple and sufficient enough to take care of the heterogeneity without affecting the capability of the model to predict the material behaviour as reported by Ghouse et al [1]. Thus the unit cell under consideration is modeled as a square with an inner circle (Fig. 1), the square representing the total volume fraction of combined properties of cement paste, fine aggregates, particulate fibers and water. The inner circle represents the total volume fraction of coarse aggregates in the material. This representative volume fraction is assigned with periodic boundary conditions to ensure uniformity in deformation and to avoid any discontinuities in the material once the unit cell has been repeatedly arranged to build up the macro sized material and has undergone deformation in elastic range. Ghouse et al [1] could identify only slight variations in the compressive strength of normal low strength concrete with varying aggregate volume fractions. A comparatively decreasing trend in compressive strength has also been observed initially when glass fiber reinforced high strength cement composite (GFRCC) was analyzed by Sunir et al [2]. Investigations proceed in the direction of predicting the material behaviour by replacing the glass fiber and its volume fraction with polypropylene fibers considered by Pavan [3] as being significant in improving the mechanical characteristics of the macro composite under consideration. An analysis of polymer fiber reinforced high strength concrete (PFRC) with similarly varying aggregate volume fractions could predict significantly decreasing trends in compressive strength for lower volume fractions. In future, the ease with which the unit cell approach predicts the behaviour of fiber reinforced plain mortar is also to be investigated in a similar manner.


Author(s):  
Muhammad Juldin ◽  
Akbar Alfa

AbstractConcrete is a composite material (mixture) consisting of cement, coarse aggregates, fine aggregates and water. The concrete formation mixture is designed in such a way as to produce fresh concrete that is easy to work with and meets the plan's compressive strength after hardening.The cement used is PCC type cement, although the composition of cement in concrete is only about 10%, but the role of cement is very important in concrete. Aggregates are mineral granules originating from nature or artificial which have a function as a mixture of fillers in concrete. The aggregate of the concrete mixture filler is divided into fine aggregates used from Javanese Inhu and coarse aggregates from Tanjung Balai Karimun. The fine aggregate is usually in the form of sand that passes through a filter with a diameter of 4.75 mm or 5 mm, while coarse aggregates do not pass through the filter. The water used is well water from Kateman District, Keritang District and Tembilahan District, Indragiri Hilir Regency, Riau Province.The compressive strength of concrete is the amount of load per unit area which causes the concrete specimen to break and there is no more carrying capacity. The average compressive strength of 28 days of cube specimens with well water in Kateman District = 491 kg / cm2, Keritang District = 469 kg / cm2 and Tembilahan District City = 475 kg / cm2.   AbstrakBeton merupakan bahan komposit (campuran) yang terdiri dari semen, agregat kasar, agregat halus dan air. Campuran bahan-bahan pembentukan beton dirancang sedemikian rupa, sehingga menghasilkan beton segar  yang mudah  dikerjakan  dan  memenuhi  kekuatan  tekan  rencana  setelah mengeras.Semen yang digunakan adalah semen tipe PCC, walaupun komposisi semen dalam beton hanya sekitar 10%, namun peran semen sangat penting dalam beton. Agregat adalah butiran mineral yang berasal dari alam atau buatan yang memiliki fungsi sebagai bahan pengisi campuran pada beton. Agregat pengisi campuran beton terbagi atas agregat halus yang digunakan berasal dari Japura Inhu dan agregat kasar berasal dari Tanjung Balai Karimun. Agregat halus biasanya berupa pasir yang lolos saringan dengan diameter 4,75 mm atau 5 mm, sedangkan agregat kasar tidak lolos saringan tersebut. Air yang digunakan yakni air sumur berasal dari Kecamatan Kateman, Kecamatan Keritang dan Kecamatan Tembilahan Kota Kabupaten Indragiri Hilir Provinsi Riau.Kuat tekan beton adalah besarnya beban per satuan luas yang menyebabkan benda uji beton pecah dan tidak ada lagi daya dukungnya. Hasil kuat tekan rata-rata umur 28 hari benda uji kubus dengan air sumur Kecamatan Kateman = 491 kg/ cm2, Kecamatan Keritang = 469 kg/cm2dan Kecamatan Tembilahan Kota = 475 kg/cm2.


2018 ◽  
Vol 25 (5) ◽  
pp. 927-937 ◽  
Author(s):  
Khuram Rashid ◽  
Sana Nazir

AbstractConservation of natural resources, healthy environments, and optimal utilization of waste materials are intimate needs of the present time, and this research work was carried out to fulfill these needs. In this experimental and analytical study, concrete was prepared by replacing natural fine aggregates with two types of used foundry sands by 10%, 20% and 30% (by volume). The properties of fresh and hardened concrete were investigated and compared with a replacement amount of fine aggregates from 0% to 30%. Compressive strength was evaluated after 7, 28 and 63 days of moist curing. Along with compressive strength, the modulus of elasticity was also investigated and a reduction in compressive strength and modulus of elasticity was observed with the increase in the amount of used foundry sand. A prediction formula was proposed to predict the compressive strength, and verified by current experimental observations and also with a large database that was also established in this work. The prediction formula may be considered as very helpful for predicting the potential of using used foundry sand as an aggregate in concrete.


2008 ◽  
Vol 3 (4) ◽  
pp. 130-137 ◽  
Author(s):  
R Kumutha ◽  
K Vijai

The properties of concrete containing coarse recycled aggregates were investigated. Laboratory trials were conducted to investigate the possibility of using recycled aggregates from the demolition wastes available locally as the replacement of natural coarse aggregates in concrete. A series of tests were carried out to determine the density, compressive strength, split tensile strength, flexural strength and modulus of elasticity of concrete with and without recycled aggregates. The water cement ratio was kept constant for all the mixes. The coarse aggregate in concrete was replaced with 0%, 20%, 40%, 60%, 80% and 100% recycled coarse aggregates. The test results indicated that the replacement of natural coarse aggregates by recycled aggregates up to 40% had little effect on the compressive strength, but higher levels of replacement reduced the compressive strength. A replacement level of 100% causes a reduction of 28% in compressive strength, 36% in split tensile strength and 50% in flexural strength. For strength characteristics, the results showed a gradual decrease in compressive strength, split tensile strength, flexural strength and modulus of elasticity as the percentage of recycled aggregate used in the specimens increased. 100% replacement of natural coarse aggregate by recycled aggregate resulted in 43% savings in the cost of coarse aggregates and 9% savings in the cost of concrete.


2020 ◽  
Vol 2 (1) ◽  
pp. 31-57
Author(s):  
Ni Ketut Sri Astati Sukawati

Concrete with various variants is a basic requirement in building a building. The concrete mixture is diverse depending on the planning made beforehand. The cement mixture is usually in the form of a mixture of artificial stone, cement, water and fine aggregates and coarse aggregates. Aggregates (fine aggregates and coarse aggregates) function as fillers in concrete mixtures. (Subakti, A., 1994). However, in building construction, additives are often added, but there is still a sense of uncertainty at the time of dismantling the mold and the reference before the concrete reaches sufficient strength to carry its own weight and the carrying loads acting on it. To overcome the time of carrying out work related to concrete, it is necessary to find an alternative solution, for example by looking for alternative ingredients of concrete mixture on the basis of consideration without reducing the quality of the concrete. From the results of previous studies it was stated that due to the partial replacement of cement with Fly Ash, the strength of the pressure and tensile strength of the concrete had increased (Budhi Saputro, A., 2008). Based on the description above, the author seeks to examine how the compressive strength of concrete characteristics that occur by adding additives Addition H.E in the concrete mixture and is there any additive Additon H.E effect on the increase in the compressive strength characteristic of the concrete. From the results of the study, it was found that the compressive strength of the concrete with the addition of additives HE was that after the compressive strength test of the concrete cube was carried out and the analysis of concrete compressive strength of 10 specimens, in each experiment a cube specimen was made with the addition of additons. HE with a dose of 80 cc, 120 cc, and 200 cc can accelerate and increase the compressive strength of concrete characteristics.


Author(s):  
Atif Jawed

Abstract: Pervious concrete is a special type of concrete, which consists of cement, coarse aggregates, water and if required and other cementations materials. As there are no fine aggregates used in the concrete matrix, the void content is more which allows the water to flow through its bodyThe main aim of this project was to improve the compressive strength characteristics of pervious concrete. But it can be noted that with increase in compressive strength the void ratio decreases. Hence, the improvement of strength should not affect the porosity property because it is the property which serves its purpose. In this investigation work the compressive strength of pervious concrete is increased by a maximum of 18.26% for 28 days when 8% fine aggregates were added to standard pervious concrete Keywords: W/C ratio, pervious Concrete, sugarcane bagasse’s ash, rice husk ash compressive strength, fine aggregates


2010 ◽  
Vol 163-167 ◽  
pp. 1655-1660
Author(s):  
Jian Zhang ◽  
Bo Diao ◽  
Xiao Ning Zheng ◽  
Yan Dong Li

The mechanical properties of high strength concrete(HSC) were experimentally investigated under mixed erosion and freeze-thaw cycling according to ASTM C666(Procedure B), the erosion solution was mixed by weight of 3% sodium chloride and 5% sodium sulfate. The mass loss, relative dynamic modulus of elasticity, compressive strength, elastic modulus and other relative data were measured. The results showed that with the increasing number of freeze-thaw cycles, the surface scaled more seriously; the mass loss, compressive strength and elastic modulus continued to decrease; the relative dynamic modulus of elasticity increased slightly in the first 225 freeze-thaw cycles, then decreased in the following 75 cycles; the corresponding strain to peak stress decreased with the increase of freeze-thaw cycles. After 200 cycles, the rate of deterioration of concrete accelerated obviously.


2013 ◽  
Vol 712-715 ◽  
pp. 917-920
Author(s):  
Lian Xi Wang ◽  
Guang Hui Pan ◽  
Fu Yong Li ◽  
Hai Ming Wang ◽  
Guo Zhong Li

Construction garbage paving bricks were made of recycled coarse and fine aggregates which were prepared by the waste concrete. The influence of replacement rate of recycled coarse aggregates, water-binder ratio and excitation agent dosage on the compressive strength and flexural strength of construction garbage paving bricks were researched. The experimental results show that optimum replacement rate of recycled coarse aggregates, water-binder ratio and excitation agent dosage were 100%, 0.43 and 1.5% respectively. In this proportion, the 7d, 28d compressive strength of the products were 15.6MPa, 37.5MPa respectively, and the 7d, 28d flexural strength were 2.0MPa, 4.3MPa respectively, which fit the requirements of the Cc30 level of compressive strength and the Cf4.0 level of flexural strength involved in JCT 446-2000 "concrete pavers".


Sign in / Sign up

Export Citation Format

Share Document