scholarly journals Pengaruh Metode Self Compacting Concrete (Scc) Terhadap Sifat Mekanis Beton

2021 ◽  
Vol 6 (1) ◽  
pp. 32
Author(s):  
Abdul Karim Hadi ◽  
Sudarman Supardi ◽  
Mukti Maruddin ◽  
A.Alal Azhari Yusuf ◽  
Rahmat Hidayat Samsuddin

Dalam dunia konstruksi pekerjaan beton memegang peranan sangat penting, baik pada bangunan struktural maupun non struktural.Dapat dilihat bahwahampir setiap bangunan yang didirikanseperti perumahan, gedung bertingkat, jembatan, jalan,  bendungan dan saluran irigasi serta bangunan lainnya selalu  memerlukan adanya pekerjaan betonterutama pada pekerjaan konstruksi beton bertulang. Selama ini pemadatan atau vibrasi dilakukan tidak sesuai dengan prosedur dan dapat menurunkan kualitas beton. Salah satu solusi mengatasi masalah tersebut yaitu dengan penggunaan self compacting concrete.Tujuan penelitian ini untuk mengetahui pengaruh penambahan superplasticizerterhadap workabilitybeton self compacting concretedan untuk mengetahui pengaruh metode self compacting concreteterhadap sifat mekanis beton. Penelitian dilakukan di laboratorium struktur dan bahan dengan penggunaan superplasticizertype sika-viscocrete 3115N sebanyak 2% dari berat semen. Pembuatan job mix designdibuat dengan metode SNI. Berdasarkan hasil penelitian superplasticizerdapat meningkatkan workabilitypada beton segar. Hasil pengujian slump cone test pada beton normal sebesar 8 cm, sedangkan hasil slump flowpada beton self compacting concretesebesar 75 cm. Pada penelitian ini didapatkan nilai kuat tekan beton normal sebesar 25,096 Mpa dan nilai kuat tekan beton SCC sebesar 30,264 Mpa dari mutu rencana 25 Mpa dan nilai kuat tarik belah beton normal sebesar 2,343 Mpa atau 9,340% dari nilai kuat tekan dan nilai kuat tarik belah beton SCC sebesar 3,358 Mpa atau 11,09%  dari nilai kuat tekan. Berdasarkan data yang didapatkan self compacting concrete memilki workabilitydan sifat mekanis yang lebih baik.   In the world of construction, concrete work plays a very important role, both in structural and non-structural buildings. It can be seen that almost every building that is erected such as housing, high rise buildings, bridges, roads, dams and irrigation canals and other buildings always requires concrete work, especially in reinforced concrete construction work. During this time compaction or vibration is done not in accordance with procedures and can reduce the quality of concrete. One solution to overcome this problem is the use of self compacting concrete. The purpose of this study was to determine the effect of adding superplasticizer to the workability of self compacting concrete and to determine the effect of the self compacting concrete method on the mechanical properties of concrete. The research was carried out in the structure and material laboratory using 2% sika-viscocrete superplasticizer as much as 2% by weight of cement. Job mix design is made using SNI method. Based on the results of research superplasticizer can increase workability in fresh concrete. The slump cone test results on normal concrete are 8 cm, while the slump flow results on self-compacting concrete are 75 cm. In this study, the compressive strength value of normal concrete was 25.096 MPa and the compressive strength value of SCC concrete was 30.264 MPa from the quality plan of 25 MPa and the value of normal concrete split tensile strength was 2.334 MPa or 9.340% of the compressive strength and SCC concrete compressive strength value. 3.358 MPa or 11.09% of the compressive strength. Based on the data obtained, self compacting concrete has better workability and mechanical properties

2018 ◽  
Vol 24 (1) ◽  
pp. 71
Author(s):  
Widodo Kushartomo ◽  
Dewi Permata Sari

This study is describe about the mechanical properties of normal concrete by adding of marble flour based on the mixed plan made. The compressive strength of the planned test object fc '20.0 and fc' 30.0 MPa was prepared by using the ACI method. The addition of marble flour in a concrete mixture varies from 0%, 5%, 10%, 15%, 20% and 25% to the weight of the cement used. Concrete test specimens were made in the form of cylinders 15.0 cm in diameter, 30.0 cm in height and made in the form of concrete beams measuring 15.0 cm x 15.0 cm x 75.0 cm, the type of mechanical testing performed in the form of compressive strength tests on cylindrical specimen, split tensile strength test on cylindrical specimen and flexure test on beam specimen. Curing is done by immersion technique at 25ºC and the test is done when the concrete is 28 days old. The test results show that the addition of marble flour to the normal concrete mixture can increase its mechanical properties by 26% for compressive strength, 24% for split tensile strength, and 17% for flexural strength. 


2018 ◽  
Vol 9 (2) ◽  
pp. 67-73
Author(s):  
M Zainul Arifin

This research was conducted to determine the value of the highest compressive strength from the ratio of normal concrete to normal concrete plus additive types of Sika Cim with a composition variation of 0.25%, 0.50%, 0.75%, 1.00%, 1.25%, 1 , 50% and 1.75% of the weight of cement besides that in this study also aims to find the highest tensile strength from the ratio of normal concrete to normal concrete in the mixture of sika cim composition at the highest compressive strength above and after that added fiber wire with a size diameter of 1 mm in length 100 mm with a ratio of 1% of material weight. The concrete mix plan was calculated using the ASTM method, the matrial composition of the normal concrete mixture as follows, 314 kg / m3 cement, 789 kg / m3 sand, 1125 kg / m3 gravel and 189 liters / m3 of water at 10 cm slump, then normal concrete added variations of the composition of sika cim 0.25%, 0.50%, 0.75%, 1.00%, 1.25%, 1.5%, 1.75% by weight of cement and fiber, the tests carried out were compressive strength of concrete and tensile strength of concrete, normal maintenance is soaked in fresh water for 28 days at 30oC. From the test results it was found that the normal concrete compressive strength at the age of 28 days was fc1 30 Mpa, the variation in the addition of the sika cim additive type mineral was achieved in composition 0.75% of the cement weight of fc1 40.2 Mpa 30C. Besides that the tensile strength test results were 28 days old with the addition of 1% fiber wire mineral to the weight of the material at a curing temperature of 30oC of 7.5%.


2010 ◽  
Vol 168-170 ◽  
pp. 1325-1329
Author(s):  
Ye Ran Zhu ◽  
Jun Cai ◽  
Dong Wang ◽  
Guo Hong Huang

This paper investigates the mechanical properties (compressive strength, splitting tensile strength and flexural toughness) of polypropylene fiber reinforced self-compacting concrete (PFRSCC). The effect of the incorporation of polypropylene fiber on the mechanical properties of PFRSCC is determined. Four point bending tests on beam specimens were performed to evaluate the flexural properties of PFRSCC. Test results indicate that flexural toughness and ductility are remarkably improved by the addition of polypropylene fiber.


2013 ◽  
Vol 275-277 ◽  
pp. 2041-2044
Author(s):  
Feng Yan ◽  
Nan Pang

In this paper,the mechanical properties were studied,the self compacting concrete cubic compression strength,prismatic compressive strength test,discussed two kinds of relationship between intensity index.


2019 ◽  
Vol 2 (2) ◽  
pp. 333
Author(s):  
Didik Hadi Prayogo ◽  
Ahmad Ridwan ◽  
Sigit Winarto

Concrete is one of the most vital building blocks, from columns, bricks, paving to roads made of concrete, so the use of concrete tends to be high. Concrete is often used as the main buffer in a building, so good quality is needed, but this is not accompanied by a declining quality of the material, so it requires innovation in the addition of new materials that can at least reduce the needs of the main material for making concrete, one of which is the utilization of Gypsum Board waste and red brick waste. The results of testing the concrete compressive strength test with the addition of Gypsum Board waste and red brick waste to cement obtained pretty good results. Concrete, which has the highest average compressive strength than normal concrete, has concrete with a mixture of red brick and gypsum waste of 10% each with a compressive strength of 250.56 kg / cm², and which has the lowest compressive strength have concrete with a mixture of red bricks and gypsum waste 15% each with a compressive strength of 195.56 kg / cm².Beton merupakan salah satu unsur penyusun bangunan paling vital mulai dari kolom,bata, paving hingga jalan terbuat dari beton sehingga penggunaan beton cenderung tinggi. Beton sering digunakan sebagai bahan penyangga utama pada suatu bangunan maka diperlukan kualitas yang baik, namun hal tersebut tidak di sertai dengan kualitas bahan yang kian menurun,makadiperlukan inovasi penambahan bahan baru yang setidaknya dapat mengurangi kebutuhan bahan utama pembuat beton, salah satunya pemanfaatan limbah Gypsum Board dan limbah batu bata merah Hasil dari pengetesan uji kuat tekan beton dengan penambahan limbah Gypsum Board dan limbah batu bata merah terhadap semen didapatkanhasil yang cukup bagus Beton yang memiliki nilai kuat tekan rata-rata paling tinggi selain beton normal di miliki beton dengan campuran batu bata merah dan limbah gypsum masing-masing 10% dengan nilai kuat tekan sebesar 250,56 Kg/cm²,dan yang memiliki nilai kuat tekan paling rendah di miliki beton dengan campuran batu bata merah dan limbah gypsum masing-masing 15% dengan nilai kuat tekan 195,56 Kg/cm².


2011 ◽  
Vol 243-249 ◽  
pp. 1179-1185
Author(s):  
Jing Fu Kang ◽  
Chun Xia Yan

This research investigated the influences of rubber content and water-cement ratio on the compressive strength of roller compacted rubberized concrete (RCR). The mix design of RCR was made by replacing same volume of sand with rubber chips based on the control concrete mix. Four rubber contents (50 kg/m3, 80 kg/m3, 100 kg/m3 and 120 kg/m3) and six water-cement ratios (0.30, 0.35, 0.40, 0.45, 0.50 and 0.55) were used. The specimen cubes were tested in compression at 28d with the load continuously and automatically measured until failure. Test results show that RCR exhibits low compressive strength but a ductile and plastic failure mode, the more the rubber used, the more the compressive strength reduced and the larger toughness obtained. Same as normal concrete, the compressive strength of RCR is also directly related to the water-cement ratio,the smaller the water-cement ratio, the higher the compressive strength. Based on the experimental results, a strength formula was developed to estimate the strength of RCR as a function of the cement strength, water-cement ratio and the rubber content.


2019 ◽  
Vol 1 (2) ◽  
pp. 124-132
Author(s):  
Hermansyah ◽  
Moh Ihsan Sibgotuloh

The more widespread use of concrete construction and the increasing scale of construction, the higher the demand for materials used in concrete mixes. One of the innovations of concrete is fiber concrete. Hope the addition of fiber in concrete mixes such as wire fiber to increase the compressive strength value of normal concrete that is often used, so the purpose of this study is to determine the effect of adding wire fiber to the ease of working (workability) of the concrete mixture and to determine the effect of adding wire fiber to concrete compressive strength. In this study, the fiber used is the type of wire fiber with a diameter of 1 mm and a length of 60 mm. Fiber variations used are 0%, 0.4%, 0.6% and 0.8% based on the weight of fresh concrete. Concrete mix (mix design) using SNI 03-2834-2000 about concrete mix planning with a test life of 28 days. The test results showed that the lowest average compressive strength of 12,291 MPa occurred at 0% variation and the highest average compressive strength value of 20,656 MPa at 0.8% fiber variation. The increase is caused by the even distribution of fibers in the concrete produced, the higher the variation that is given by the fiber, the better the fiber spread, from these fibers provide a fairly good contribution to the fiber concrete


2019 ◽  
Vol 8 (3) ◽  
pp. 7736-7739 ◽  

This paper studies the effect of incorporating metakaolin on the mechanical properties of high grade concrete. Three different metakaolins calcined at different temperature and durations were used to make concrete specimens. Three different concrete mixtures were characterized using 20% metakaolin in place of cement. A normal concrete mix was also made for comparison purpose. The compressive strength test, split tensile test and flexural strength tests were conducted on the specimens. The compressive strength test results showed that all the metakaolin incorporated concrete specimens exhibited higher compressive strength and performed better than normal concrete at all the days of curing. The rate of strength development of all the mixes was also studied. The study revealed that all the three different metakaolin incorporated mixtures had different rate of strength development for all the days of hydration (3, 7,14, 28, 56 and 90), indicating that all the metakaolins possessed different rate of pozzolanic reactivity. Further, from the analysis of the test results, it was concluded that the variation in the rate of strength development is due to the differences in the temperature and duration at which they were manufactured. The results of split tensile strength test and the flexural strength test conducted on the specimens, supported the conclusions drawn from the results of compressive strength test. The paper also discusses, the rate of development of compressive strength and the pozzolanic behaviour of the metakaolins in light of their parameters of calcination and physical properties such as amorphousness and particle size. This paper has been written with a view to make the potential of metakaolin available to the construction industry at large


2020 ◽  
Vol 13 (2) ◽  
pp. 111
Author(s):  
Anni Susilowati ◽  
Pratikto Pratikto ◽  
Dennis Yudha Praditya ◽  
Kusno Wijayanto

Self Compacting Concrete (SCC) as one type of concrete that is mostly used in building construction has good workability and can be obtained by adding filler instead of cement. Ground Granulated Blast Furnace Slag (GGBFS) has a chemical composition similar to the content in cement. Therefore, the study of the use of GGBFS was used as a partial substitute for cement in the SCC to examine the influences and quality of GGBFS on fresh concrete and to obtain SCC with the best compressive strength. This research method uses an experimental method by making SCC concrete specimens with an initial fas of 0.4 according to ACI 211.4R-93. The specimens were worked using GGBFS levels of 0%, until 80%, and using 1,4% superplasticizer, and 2% accelerator by weight of cement. The use of GGBFS at SCC can increase the value of compressive strength of about 4,27%-25,64 compared to SCC without using GGBFS. The resulted are known that GGBFS can influence compression strength. Based on the testing of fresh and hard concrete, it concluded that the best quality of SCC used 20% of GGBFS.


Sign in / Sign up

Export Citation Format

Share Document