scholarly journals Removal Efficiency of Chemical Oxygen Demand on Greywater using Multi Soil Layering (MSL) Technology

Author(s):  
Syafrudin Syafrudin ◽  
Mochtar Hadiwidodo ◽  
Irawan Wisnu Wardhana ◽  
Tika Ayu Kusuma Wardani ◽  
Indah Sekar Arumdani ◽  
...  
Processes ◽  
2019 ◽  
Vol 7 (7) ◽  
pp. 418 ◽  
Author(s):  
Pedro Cisterna-Osorio ◽  
Verónica Lazcano-Castro ◽  
Gisela Silva-Vasquez ◽  
Mauricio Llanos-Baeza ◽  
Ignacio Fuentes-Ortega

The objective of this work is to evaluate the impact of innovative modifications made to conventional effluent capture and discharge devices used in subsurface flow wetlands (SSFW). The main modifications that have been developed extend the influence of the capture and discharge device in such a way that the SSFW width and height are fully covered. This improved innovative device was applied and evaluated in two subsurface flow wetlands, one on a pilot scale and one on a real scale. To evaluate the impact of the innovative device with respect to the conventional one in the operational functioning of subsurface flow wetlands, the elimination of chemical oxygen demand (COD) was measured and compared. The results show that for the innovative device, the COD removal was 10% higher than for the conventional device, confirming the validity and effectiveness of the modifications implemented in the effluent capture and discharge devices used in SSFW.


2016 ◽  
Vol 74 (12) ◽  
pp. 2795-2806
Author(s):  
M. Manga ◽  
B. E. Evans ◽  
M. A. Camargo-Valero ◽  
N. J. Horan

The effect of sand filter media thickness on the performance of faecal sludge (FS) drying beds was determined in terms of: dewatering time, contaminant load removal efficiency, solids generation rate, nutrient content and helminth eggs viability in the dried sludge. A mixture of ventilated improved pit latrine sludge and septage in the ratio 1:2 was dewatered using three pilot-scale sludge drying beds with sand media thicknesses of 150, 250 and 350 mm. Five dewatering cycles were conducted and monitored for each drying bed. Although the 150 mm filter had the shortest average dewatering time of 3.65 days followed by 250 mm and 350 mm filters with 3.83 and 4.02 days, respectively, there was no significant difference (p > 0.05) attributable to filter media thickness configurations. However, there was a significant difference for the percolate contaminant loads in the removal and recovery efficiency of suspended solids, total solids, total volatile solids, nitrogen species, total phosphorus, chemical oxygen demand, dissolved chemical oxygen demand and biochemical oxygen demand, with the highest removal efficiency for each parameter achieved by the 350 mm filter. There were also significant differences in the nutrient content (NPK) and helminth eggs viability of the solids generated by the tested filters. Filtering media configurations similar to 350 mm have the greatest potential for optimising nutrient recovery from FS.


2015 ◽  
Vol 93 (5) ◽  
pp. 536-541
Author(s):  
Pavithra Bhakthi Jayathilaka ◽  
Gayani Chathurika Pathiraja ◽  
Athula Bandara ◽  
Nalaka Deepal Subasinghe ◽  
Nadeeshani Nanayakkara

Phenol, a known water pollutant, was electrochemically oxidized on a steel/IrO2–Sb2O3 novel anode. Since the oxidation mechanisms vary based on the anode material, a mechanisms study of electrooxidation of phenol on it was conducted. The phenol oxidation was carried out at 20 mA/cm2 constant current density with a pH 11.00 Na2SO4 medium at room temperature. During 6 h of electrolysis, samples were tested for chemical oxygen demand removal efficiency of the anode. The steel/IrO2–Sb2O3anode showed 76.3% chemical oxygen demand removal efficiency. Both 4-nitroso-N,N-dimethylaniline and the HCO3–/CO32– radical scavenger tests confirmed the formation and presence of the hydroxyl radicals in the system. Therefore, it was concluded that the hydroxyl radicals that are generated on the anode surface are the main cause for the oxidation mechanism. Moreover, ICE, HPLC, and UV-vis absorbance and cyclic voltammetry results confirmed the presence of catechol and benzoquinone as intermediates and the reaction mechanism.


2002 ◽  
Vol 45 (1) ◽  
pp. 49-53 ◽  
Author(s):  
C.T. Zanotelli ◽  
W. Medri ◽  
P. Belli Filho ◽  
C.C. Perdomo ◽  
M.R. Mulinari ◽  
...  

This paper shows the performance of a baffled facultative pond for the treatment of piggery wastes. The full-scale system is composed of an equalizer, one decanter (DP), two anaerobic ponds (LA1 and LA2), one facultative pond (LF), with five baffles, and one maturation pond with water hyacinths (LAG). The studies were conducted over a 12 month period in the west region of Santa Catarina, Brazil. The system was supplied daily with a volume of 3 m3/day of farm wastes. A good performance of the treatment system was obtained with average removal efficiencies of 98% for chemical oxygen demand, 93% for total solids, 98% for total phosphorus, 92% for total nitrogen, 7 log units of faecal coliforms and 5 log units of total coliforms. The facultative pond performed well, removing 43% of the chemical oxygen demand, 47% of total nitrogen and 54% of total phosphorus. It was found that the first baffle in the facultative pond was mainly responsible for the efficiency of this pond, and compared with another study the introduction of the baffles improved the removal efficiency by 20% for total phosphorus.


2021 ◽  
Vol 11 (6) ◽  
Author(s):  
Khaled Abd el naser I. Ibrahim ◽  
Tarek Ismail M. Sabry ◽  
Ahmed S. El-Gendy ◽  
Sayed I. A. Ahmed

AbstractIn an attempt to improve the quality of the agricultural drain in Egypt for its reuse again in the irrigation, low-cost solution such as sand filter along with/without other filtration media has been used in this research. As a result of that, pilot plant of sand filter mixed with other filtration media was tested for its ability to improve the sand performance in removing the suspended solids and organic matters from agricultural drain water of the Belbeis drain (in Sharkia governorate in Egypt). Sand only, sand mixed with sponge, sand mixed with activated carbon and sand mixed with ceramic cylinders have been tested to find the best media combination and optimum mixing sand/ medium ratio and optimum infiltration rate. The work has been done on four runs. It was found that sand mixed with ceramic cylinders gave the best removal efficiency with respect to total chemical oxygen demand and chemical oxygen demand for solution which were 77, 74%, respectively, whereas sand mixed with sponge had the best removal efficiency with respect to total suspended solids which was 89%. Also, all tested media combination had effluent quality that complied with Egyptian law 48 for the year 1982 regarding the disposal of wastewater into agricultural drains (chemical oxygen demand ≤ 80 mg/l, total suspended solids ≤ 50 mg/l).


2010 ◽  
Vol 61 (7) ◽  
pp. 1749-1756 ◽  
Author(s):  
B. Q. Liao ◽  
M. R. Zheng ◽  
L. Ratana-Rueangsri

A comparative study on the treatment of synthetic kraft evaporator condensate was conducted using thermophilic (55°C) and mesophilic (30°C) membrane aerated biofilm reactors (MABRs) and sequencing batch reactors (SBRs) for 8 months. Under tested conditions, a chemical oxygen demand (COD) removal efficiency of 80–95% was achieved with both thermophilic and mesophilic MABRs and SBRs. The COD removal efficiency of thermophilic MABR (80–90%) was slightly lower than that of the mesophilic MABR (85–95%) and the thermophilic SBR (90–95%). A significant amount (13–37%) of COD was stripped by conventional aeration in the SBRs, while stripping in MABRs was negligible. Simultaneous COD removal and denitrification were observed in the mesophilic MABR, while the thermophilic MABR contributed mainly for COD removal. Nitrification was not significant in both the thermophilic and mesophilic MABRs. The results suggest that treatment of kraft evaporator condensate is feasible with the use of both thermophilic and mesophilic MABRs in terms of COD removal with the advantages of negligible stripping.


2019 ◽  
Vol 11 (8) ◽  
pp. 2350 ◽  
Author(s):  
Sergio A. Zamora-Castro ◽  
José Luis Marín-Muñiz ◽  
Luis Sandoval ◽  
Monserrat Vidal-Álvarez ◽  
Juan Manuel Carrión-Delgado

The effects of Canna indica (P1), Pontederia sagittata (P2), and Spathiphyllum wallisii (P3) growing in different filter media materials (12 using porous river rock and 12 using tepezyl) on the seasonal removal of pollutants of wastewater using fill-and-drain constructed wetlands (FD-CWs) were investigated during 12 months. Three units of every media were planted with one plant of P1, P2, and P3, and three were kept unplanted. C. indica was the plant with higher growth than the other species, in both filter media. The species with more flower production were: C. indica > P. sagittate > S. wallisii. Reflecting similarly in the biomass of the plants, C. indica and P. sagittata showed more quantity of aerial and below ground biomass productivity than S. wallisii. With respect to the removal efficiency, both porous media were efficient in terms of pollutant removal performance (p > 0.05). However, removal efficiency showed a dependence on ornamental plants. The higher removal of chemical oxygen demand (COD), biochemical oxygen demand (BOD5), total kjeldahl nitrogen (TKN), nitrates (NO3−-N), ammonium (NH4+-N), and phosphates (PO4−3-P) oscillated between 81% to 83%, 80% to 84%, 61% to 69%, 61% to 68%, 65% to 71%, 62% to 68%, and 66% to 69%, respectively, in P1 and P2, removals 15% to 30% higher than P3. The removal in planted microcosms was significantly higher than the unplanted control units (p = 0.023). Nitrogen and phosphorous compounds were highly removed (60%–80%) because in typical CWs, such pollutant removals are usually smaller, indicating the importance of FD-CWs on wastewater treatments using porous river rock and tepezyl as porous filter media. (BOD5), chemical oxygen demand (COD), (NO3−-N), (NH4+-N), (TKN), and (PO4−3-P).


2020 ◽  
Vol 4 (1) ◽  
pp. 9-13
Author(s):  
Fadli Mulyadi ◽  
Yulianti Pratama ◽  
Lina Apriyanti

ABSTRAKLimbah cair laboratorium pegujian kualitas air merupakan buangan limbah yang berasal dari kegiatan pengujian kualitas air di laboratorium. Salah satu limbah cair laboratorium yang mengandung Cr6+ adalah limbah cair dari hasil pengujian COD (Chemical Oxygen Demand) yang berpotensi mencemari lingkungan karena bersifat karsinogenik. Sehingga dilakukan penelitian untuk mengetahui efisiensi penyisihan Cr6+ pada limbah cair melalui proses presipitasi dengan penggunaan bahan yang minimum dan ekonomis serta efisien. Variasi terhadap jenis dan konsentrasi presipitan yang digunakan pada penelitian ini adalah NaOH dan Ca(OH)2 dengan nilai konsentrasi 50% serta variasi pH yaitu 8; 9; 10; 11. Hasil penelitian diperoleh efisiensi penyisihan Cr6+ pada proses presipitasi sebesar 44,93% pada variasi jenis presipitan Ca(OH)2 dengan konsentrasi 50% serta pada kondisi pH 8,23.Kata kunci: Limbah COD, Kromium Heksavalen, Presipitasi, Adsorpsi, Efisiensi Penyisihan, Karbon Aktif GranularABSTRACTLiquid laboratory waste generated from water quality examination activities especially from the COD (Chemical Oxygen Demand) analysis contains Cr6+ which potentially pollute the environment due to its carcinogenic effect. The research aimed to determine the removal efficiency of Cr6+ treated by precipitation with a minimum amount of precipitate and high efficiency. In this research, variations of pH were made at constant NaOH and Ca(OH)2 concentrations of 50% while pH levels were adjusted to be 8; 9; 10; 11, respectively. Results showed that the highest Cr6+ removal of 44,93% was obtained by Ca(OH)2 50% with the pH adjusted at 8,23.Keywords: COD contained wastewater, Hexavalent Chromium, Precipitation, Adsorption, Granular Activated Carbon.


Sign in / Sign up

Export Citation Format

Share Document