scholarly journals Global mapping of research trends on antibacterial activity of green silver nanoparticles

2021 ◽  
Author(s):  
Kunle Okaiyeto ◽  
Idowu Olaposi Omotuyi ◽  
Oluwafemi Omoniyi Oguntibeju

Over the years, the quest for antibacterial agents from green nanoparticles has attracted great attention due to the global rise in the prevalence of multi-drug resistant bacteria. Although several studies on the antibacterial activity of plant-mediated silver nanoparticles have been documented, no bibliometric studies on the subject have been reported to date. As a result, the present study aimed to assess the global research trends on the antibacterial activity of green silver nanoparticles from 2000 to 2020. In the present study, we explored Science Citation Index Expanded (SCIE) to extract research articles written in English on the subject within the specified period. Two hundred and sixty-nine (269) eligible research articles were included in the bibliometric analysis and R-package “bibliometrix” was used to analyse the documents for annual scientific publications, authors’ impact, most relevant institutions, countries productivity, frequent words, co-occurrence network, co-citation network and authors/institutions/countries collaboration networks. Based on the analysis, the top three (3) authors, journals, institutions and countries were Kumar V (n = 5), Zangeneh MM (n = 5) and Oh BT (n = 4); King Saud University, Banaras Hindu University and Islamic Azad University; Journal of Cluster Science (n = 10), Applied Organometallic Chemistry (n = 8) and Microbial Pathogenesis (n = 8); India, Iran, and Korea. The study findings highlighted the gaps in a research collaboration that negate productivity. Therefore, we are optimitic that this study would enlighten researchers in the field about the research lapses and the need for research collaboration in future studies.

2013 ◽  
Vol 57 (10) ◽  
pp. 4945-4955 ◽  
Author(s):  
Divya Prakash Gnanadhas ◽  
Midhun Ben Thomas ◽  
Rony Thomas ◽  
Ashok M. Raichur ◽  
Dipshikha Chakravortty

ABSTRACTThe emergence of multidrug-resistant bacteria is a global threat for human society. There exist recorded data that silver was used as an antimicrobial agent by the ancient Greeks and Romans during the 8th century. Silver nanoparticles (AgNPs) are of potential interest because of their effective antibacterial and antiviral activities, with minimal cytotoxic effects on the cells. However, very few reports have shown the usage of AgNPs for antibacterial therapyin vivo. In this study, we deciphered the importance of the chosen methods for synthesis and capping of AgNPs for their improved activityin vivo. The interaction of AgNPs with serum albumin has a significant effect on their antibacterial activity. It was observed that uncapped AgNPs exhibited no antibacterial activity in the presence of serum proteins, due to the interaction with bovine serum albumin (BSA), which was confirmed by UV-Vis spectroscopy. However, capped AgNPs [with citrate or poly(vinylpyrrolidone)] exhibited antibacterial properties due to minimized interactions with serum proteins. The damage in the bacterial membrane was assessed by flow cytometry, which also showed that only capped AgNPs exhibited antibacterial properties, even in the presence of BSA. In order to understand thein vivorelevance of the antibacterial activities of different AgNPs, a murine salmonellosis model was used. It was conclusively proved that AgNPs capped with citrate or PVP exhibited significant antibacterial activitiesin vivoagainstSalmonellainfection compared to uncapped AgNPs. These results clearly demonstrate the importance of capping agents and the synthesis method for AgNPs in their use as antimicrobial agents for therapeutic purposes.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Anes Al-Sharqi ◽  
Kasing Apun ◽  
Micky Vincent ◽  
Devagi Kanakaraju ◽  
Lesley Maurice Bilung

Silver nanoparticles (Ag-NPs) possess excellent antibacterial properties and are considered to be an alternative material for treating antibiotic-resistant bacteria. The present study was aimed at enhancing the antibacterial efficiency of Ag-NPs using visible laser light against Escherichia coli and Staphylococcus aureus in vitro. Four concentrations of Ag-NPs (12.5, 25, 50, and 100 μg/ml), synthesized by the chemical reduction method, were utilized to conduct the antibacterial activity of prepared Ag-NPs. The antibacterial efficiencies of photoactivated Ag-NPs against both bacteria were determined by survival assay after exposure to laser irradiation. The mechanism of interactions between Ag-NPs and the bacterial cell membranes was then evaluated via scanning electron microscopy (SEM) and reactive oxygen species analysis to study the cytotoxic action of photoactivated Ag-NPs against both bacterial species. Results showed that the laser-activated Ag-NP treatment reduced the surviving population to 14% of the control in the E. coli population, while the survival in the S. aureus population was reduced to 28% of the control upon 10 min exposure time at the concentration of 50 μg/ml. However, S. aureus showed lower sensitivity after photoactivation compared to E. coli. Moreover, the effects depended on the concentration of Ag-NPs and exposure time to laser light. SEM images of treated bacterial cells indicated that substantial morphological changes occurred in cell membranes after treatment. The results suggested that Ag-NPs in the presence of visible light exhibit strong antibacterial activity which could be used to inactivate harmful and pathogenic microorganisms.


Nanomaterials ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 205
Author(s):  
Jeong Choi ◽  
Hyon Jung ◽  
Yeon Baek ◽  
Bo Kim ◽  
Min Lee ◽  
...  

In this work, the antibacterial activity of silver nanoparticles (AgNPs) synthesized using Areca catechu extracts against three species of antibiotic-susceptible and three species of resistant bacteria was investigated. The effects of this plant were more promising when compared with other medicinal plants tested. The hydrothermal extract of Areca catechu was mixed with silver nitrate to synthesize AgNPs. The synthesized particle characteristics were analyzed by UV–Vis spectrophotometry, scanning electron microscopy (SEM), dynamic light scattering (DLS), and Fourier-transform infrared spectroscopy (FT-IR). Minimum inhibitory concentration and minimum bactericidal concentration tests were conducted to confirm antibacterial activity and the results showed that AgNPs synthesized using Areca catechu extracts effectively inhibited the growth of bacterial species. Moreover, the SEM images of the bacterial species treated with AgNPs synthesized with Areca catechu extracts showed that clusters of AgNPs were attached to the surface of the bacterial cell wall, which could induce destruction of the cell membranes. The results suggest that AgNPs synthesized with Areca catechu extracts have the potential to treat antibiotic-resistant bacteria known as the major cause of nosocomial infections.


2020 ◽  
Vol 11 (2) ◽  
pp. 2525-2532
Author(s):  
Sheik Shehensha ◽  
Jyothi M V

Silver nanoparticles were biosynthesized from Nigella sativa seed extracts using ethanol and chloroform. The antibacterial activity of silver nanoparticles against some drug-resistant bacteria has been established, but further study is needed to assess whether these particles could be an option for the treatment and prevention of drug-resistant microbial infections. Synthesized nanoparticles were characterized and screened for their antibacterial properties on resistant strains. The biosynthesized silver nanoparticles were characterized by UV-Visible, FTIR, Dynamic light scattering and Scanning Electron Microscope (SEM) analysis. The antibacterial action of biosynthesized silver nanoparticles was assessed by Microtitre Broth dilution process using Ciprofloxacin as standard, against resistant strains like Pseudomonas aeruginosa, Clostridium difficile, Klebsiella pneumoniae and Streptococcus pyogenes. The Silver nanoparticles obtained from chloroform extract of Nigella sativa seeds were more effective against Pseudomonas aeuruginosa, Clostridium difficile and Streptococcus pyogenes; than ethanolic seed extracts at 120 µL. Our data propose that the silver nanoparticles are effective against a variety of drug-resistant bacteria, which makes them a potential candidate for use in pharmaceutical products that may help to treat drug-resistant pathogens in different clinical environments. The present study focuses on the ability of phytoconstituents capped with silver nitrate can be used to treat infections caused by resistant bacteria


2019 ◽  
Vol 1 (6) ◽  
pp. 2365-2371 ◽  
Author(s):  
Hanif Haidari ◽  
Nirmal Goswami ◽  
Richard Bright ◽  
Zlatko Kopecki ◽  
Allison J. Cowin ◽  
...  

The interplay between size and valence state in ∼3 nm silver nanoparticles resulted in the highest antibacterial effect against multi-drug resistant bacteria.


Author(s):  
L Radha ◽  
J Arumugam

Bibliometrics is one of the statistical methods to analyze the research output of books, articles, and other scientific publications. This paper attempts to study the three types of Bibliometric indicators such as quantity, quality, and structural indicators. This study pertains to the information on the research growth of Bibliometric study, especially in the subject category of Library and Information Science published in Web of Science Database. This paper presents the findings of a Bibliometric study, targeting five year period (2014–2018), with the aim of identifying emerging research directions, the top-20 institutions, coupling, and collaboration by applying VOS viewer and Biblioshiny for bibliometric tools.


2021 ◽  
Vol 8 (9) ◽  
pp. 177
Author(s):  
Saengrawee Thammawithan ◽  
Pawinee Siritongsuk ◽  
Sawinee Nasompag ◽  
Sakda Daduang ◽  
Sompong Klaynongsruang ◽  
...  

The excessive use of antibiotics in both human and veterinary medicine has contributed to the development and rapid spread of drug resistance in bacteria. Silver nanoparticles (AgNPs) have become a tool of choice that can be used to treat these resistant bacteria. Several studies have shown that AgNPs have antibacterial and wound healing properties. In this study, we evaluated the biological activity of anisotropic AgNPs to develop an antimicrobial gel formulation for treating wound infections. We showed that some anisotropic AgNPs (S2) have an effective antibacterial activity against bacterial pathogens and low cytotoxicity to keratinocytes and fibroblasts in vitro. The MIC and MBC values were in the range of 2–32 µg/mL, and cytotoxicity had IC50 values of 68.20 ± 9.71 µg/mL and 68.65 ± 10.97 µg/mL against human keratinocyte and normal human dermal fibroblast cells, respectively. The anisotropic AgNPs (S2) were used as a gel component and tested for antibacterial activity, including long-term protection, compared with povidone iodine, a common antiseptic agent. The results show that the anisotropic AgNPs can inhibit the growth of most tested bacterial pathogens and provide protection longer than 48 h, whereas povidone iodine only inhibits the growth of some bacteria. This study suggests that anisotropic AgNPs could be used as an alternative antimicrobial agent for treating bacterial skin infection and as a wound healing formulation.


2020 ◽  
Vol 9 (1) ◽  
pp. 203-211 ◽  
Author(s):  
Shabana Wagi ◽  
Ambreen Ahmed

AbstractAntibiotics are the chemicals responsible for killing pathogenic bacteria but inappropriate and extensive use of antibiotics is hazardous causing adverse impact on human health. Excessive use of antibiotics has led to the development of multiple-drug resistant bacteria posing health hazards to mankind. The study of nanoparticles has revolutionized the problem solving concerns regarding fields of agriculture, chemistry and medicine. Nanoparticles are smaller than atomic nuclei offering more surface area and greater reactivity. Bacterial silver nanoparticles (AgNPs) were studied for their antibacterial potential. AgNPs from Bacillus subtilus show the highest antibacterial activity. Nanoparticles exhibiting antibacterial activity can be helpful to reduce the toxic impact of synthetic antibiotics. Present work deals with the green production of silver nanoparticles by exploiting indigenous bacteria. These AgNPs were characterized through Fourier transform infrared spectroscopic (FTIR) analysis, transmission electron microscopy (TEM) and UV spectroscopic analysis and were also evaluated for their antibacterial and antifungal potential. The data suggested the extracellular biosynthesis method to be very effective for the biosynthesis of AgNPs in some bacterial strains. Keeping in view the antibacterial potential of studied AgNPs, the present work suggests green production of nanoparticles which can be effectively utilized as environment friendly antibacterial and antifungal agents.


2021 ◽  
pp. 002202212110447
Author(s):  
Renzhong Peng ◽  
Chongguang Zhu ◽  
Weiping Wu

As acculturation research has become more interdisciplinary and dynamic over the last 20 years, it is necessary to explore its emerging trends. We collected 10,039 research articles on acculturation research from 2000 to 2020 from the Web of Science (WoS) database and utilized the CiteSpace tool to visualize emerging trends. During the data analysis, we extracted noun phrases from the abstracts of the retrieved articles to identify clusters, and the log-likelihood ratio (LLR) algorithm was used to generate cluster labels in the co-citation network. Based on the size of the clusters, the five largest clusters were chosen and analyzed: “Asian cultural value,” “Suicide attempt,” “Unhealthy behavior,” “Host country identification,” and “Emerging adulthood”. These findings may help researchers and scholars gain useful insight and explore topics related to the research trends in acculturation.


Sign in / Sign up

Export Citation Format

Share Document