scholarly journals An overview of molecular identification of insect fauna with special emphasis on chalcid wasps (Hymenoptera: Chalcidoidea) of India

2018 ◽  
Vol 111 (1) ◽  
pp. 229
Author(s):  
Ajaz RASOOL ◽  
Tariq AHMAD ◽  
Bashir Ahmad GANAI ◽  
Shaziya GULL

Identifying organisms has grown in importance as we monitor the biological effects of global climate change and attempt to preserve species diversity in the face of accelerating habitat destruction. Classical taxonomy falls short in this race to catalogue biological diversity before it disappears. Differentiating subtle anatomical differences between closely related species requires the subjective judgment of highly trained specialists – and few are being trained in institutes today. DNA barcodes allow non-experts to objectively identify species – from small, damaged, or even industrially processed material. The aim of DNA barcoding is to establish a shared community resource of DNA sequences commonly used for identification, discrimination or taxonomic classification of organisms. It is a method that uses a short genetic marker in an organism's DNA to identify and distinguish its belonging from particular species, varieties or inter varieties. This simple technique has attracted attention from taxonomists, ecologists, conservation biologists, agriculturists, plant-quarantine officers and studies using the DNA barcode has rapidly increased. The extreme diversity of insects and their economical, epidemiological and agricultural importance have made them a major target of DNA barcoding. In this review, we present an overview of DNA barcoding of insects with emphasis on Chalcid wasps of India.

2019 ◽  
Author(s):  
Erwan Delrieu-Trottin ◽  
Jeffrey T. Williams ◽  
Diane Pitassy ◽  
Amy Driskell ◽  
Nicolas Hubert ◽  
...  

AbstractThe emergence of DNA barcoding and metabarcoding opened new ways to study biological diversity, however, the completion of DNA barcode libraries is fundamental for such approaches to succeed. This dataset is a DNA barcode reference library (fragment of Cytochrome Oxydase I gene) for 2,190 specimens representing at least 540 species of shore fishes collected over 10 years at 154 sites across the four volcanic archipelagos of French Polynesia; the Austral, Gambier, Marquesas and Society Islands, a 5,000,000 km2area. At present, 65% of the known shore fish species of these archipelagoes possess a DNA barcode associated with preserved, photographed, tissue sampled and cataloged specimens, and extensive collection locality data. This dataset represents one of the most comprehensive DNA barcoding efforts for a vertebrate fauna to date. Considering the challenges associated with the conservation of coral reef fishes and the difficulties of accurately identifying species using morphological characters, this publicly available library is expected to be helpful for both authorities and academics in various fields.


2011 ◽  
Vol 6 (1) ◽  
pp. 1934578X1100600 ◽  
Author(s):  
Hai-Feng Gu ◽  
Yun Xia ◽  
Rui Peng ◽  
Bang-Hui Mo ◽  
Li Li ◽  
...  

Gekko gecko, an animal used as a valued traditional Chinese medicine, has been widely used for over 2000 years. Due to localized habitat destruction, the amount of G. gecko has dramatically decreased in recent years. As a result, more and more adulterants have been detected in the traditional medicine, which has resulted in a chaotic market. Therefore, a correct identification method is badly needed. In this study, we employed a new molecular method of DNA barcoding for discriminating gecko from its adulterants. Fifty-seven specimens of gecko and its adulterants were collected as test samples. The full-barcode and mini-barcode sequences of these specimens were separately amplified and sequenced separately. Together with other published barcode sequences, we detected that the intra-specific sequence diversity was far lower than the inter-specific diversity in G. gecko and its adulterants (3% compared with 35% in full-length barcode; 4% compared with 33.5% in mini-barcode). These results showed that both the full-length and mini-barcodes were effective for identifying gecko, which suggested that the DNA barcode could be an effective and powerful tool for identifying the Chinese crude drug gecko.


Author(s):  
Takeru Nakazato

DNA barcoding technology has become employed widely for biodiversity and molecular biology researchers to identify species and analyze their phylogeny. Recently, DNA metabarcoding and environmental DNA (eDNA) technology have developed by expanding the concept of DNA barcoding. These techniques analyze the diversity and quantity of organisms within an environment by detecting biogenic DNA in water and soil. It is particularly popular for monitoring fish species living in rivers and lakes (Takahara et al. 2012). BOLD Systems (Barcode of Life Database systems, Ratnasingham and Hebert 2007) is a database for DNA barcoding, archiving 8.5 million of barcodes (as of August 2020) along with the voucher specimen, from which the DNA barcode sequence is derived, including taxonomy, collected country, and museum vouchered as metadata (e.g. https://www.boldsystems.org/index.php/Public_RecordView?processid=TRIBS054-16). Also, many barcoding data are submitted to GenBank (Sayers et al. 2020), which is a database for DNA sequences managed by NCBI (National Center for Biotechnology Information, US). The number of the records of DNA barcodes, i.e. COI (cytochrome c oxidase I) gene for animal, has grown significantly (Porter and Hajibabaei 2018). BOLD imports DNA barcoding data from GenBank, and lots of DNA barcoding data in GenBank are also assigned BOLD IDs. However, we have to refer to both BOLD and GenBank data when performing DNA barcoding. I have previously investigated the registration of DNA barcoding data in GenBank, especially the association with BOLD, using insects and flowering plants as examples (Nakazato 2019). Here, I surveyed the number of species covered by BOLD and GenBank. I used fish data as an example because eDNA research is particularly focused on fish. I downloaded all GenBank files for vertebrates from NCBI FTP (File Transfer Protocol) sites (as of November 2019). Of the GenBank fish entries, 86,958 (7.3%) were assigned BOLD identifiers (IDs). The NCBI taxonomy database has registrations for 39,127 species of fish, and 20,987 scientific names at the species level (i.e., excluding names that included sp., cf. or aff.). GenBank entries with BOLD IDs covered 11,784 species (30.1%) and 8,665 species-level names (41.3%). I also obtained whole "specimens and sequences combined data" for fish from BOLD systems (as of November 2019). In the BOLD, there are 273,426 entries that are registered as fish. Of these entries, 211,589 BOLD entries were assigned GenBank IDs, i.e. with values in “genbank_accession” column, and 121,748 entries were imported from GenBank, i.e. with "Mined from GenBank, NCBI" description in "institution_storing" column. The BOLD data covered 18,952 fish species and 15,063 species-level names, but 35,500 entries were assigned no species-level names and 22,123 entries were not even filled with family-level names. At the species level, 8,067 names co-occurred in GenBank and BOLD, with 6,997 BOLD-specific names and 599 GenBank-specific names. GenBank has 425,732 fish entries with voucher IDs, of which 340,386 were not assigned a BOLD ID. Of these 340,386 entries, 43,872 entries are registrations for COI genes, which could be candidates for DNA barcodes. These candidates include 4,201 species that are not included in BOLD, thus adding these data will enable us to identify 19,863 fish to the species level. For researchers, it would be very useful if both BOLD and GenBank DNA barcoding data could be searched in one place. For this purpose, it is necessary to integrate data from the two databases. A lot of biodiversity data are recorded based on the Darwin Core standard while DNA sequencing data are sometimes integrated or cross-linked by RDF (Resource Description Framework). It may not be technically difficult to integrate these data, but the species data referenced differ from the EoL (The Encyclopedia of Life) for BOLD and the NCBI taxonomy for GenBank, and the differences in taxonomic systems make it difficult to match by scientific name description. GenBank has fields for the latitude and longitude of the specimens sampled, and Porter and Hajibabaei 2018 argue that this information should be enhanced. However, this information may be better described in the specimen and occurrence databases. The integration of barcoding data with the specimen and occurrence data will solve these problems. Most importantly, it will save the researcher from having to register the same information in multiple databases. In the field of biodiversity, only DNA barcode sequences may have been focused on and used as gene sequences. The museomics community regards museum-preserved specimens as rich resources for DNA studies because their biodiversity information can accompany the extraction and analysis of their DNA (Nakazato 2018). GenBank is useful for biodiversity studies due to its low rate of mislabelling (Leray et al. 2019). In the future, we will be working with a variety of DNA, including genomes from museum specimens as well as DNA barcoding. This will require more integrated use of biodiversity information and DNA sequence data. This integration is also of interest to molecular biologists and bioinformaticians.


Author(s):  
Hidayat Ashari ◽  
Dwi Astuti

<p>Javan Plover named <em>Charadrius javanicus</em> is taxonomically under controversy and phylogenetically unresolved yet. Through an analysis of DNA barcode, this study aims (1) to confirm whether Javan Plover is separated species named <em>Charadrius javanicus</em> or a subspecies of <em>C. alexandrinus</em> which named <em>C. a. javanicus</em> and (2) to determine a relationship within this genus. Totally 666 bp DNA sequences of COI barcode gene were analyzed.  The results showed that a sequence divergence between Javan Plover and <em>C. alexandrinus alexandrinus</em> was only 1.2%, while sequence divergences between <em>C.a.alexandrinus</em> and others species, or between Javan Plover and others species were ranged from 9-12%.  Neighbour-joining (NJ) and maximum-parsimony (MP) analyses showed that all individuals of both Javan Plover and Kenith Plover were clustered together, and supported by 99 % and 100 % of bootstrap value in NJ and MP, respectively. This study tends to support the previous findings that Javan Plover was not a separated species named<em> C. javanicus</em>, but it was as a subspecies of <em>C. alexandrinus</em>; named <em>C. a. javanicus</em>. There were two groups of Plover in this study; (<em>C. leschenaultii </em>and <em>C. javanicus </em>+ <em>C.a.alexandrinus</em>), and (<em>C.dubius</em> and <em>C. melodus + C. semipalmatus</em>). DNA barcoding analysis can give certainty taxonomic status of the bird. Then, this study has implication as a basic data that can be used to provide and support the planning of Javan plover conservation programs. </p>


2022 ◽  
Vol 7 (1) ◽  
pp. 1-7
Author(s):  
A Shabnam ◽  
K P Dinesh

DNA Barcoding is one of the emerging tools in molecular identification of faunal diversity, specifically insect fauna. The Surinam cockroach, Pycnoscelus surinamensis is the only known roach to be obligatorily parthenogenetic, with reported haplotypes. P. surinamensis is well established in Indomalayan, tropical and subtropical regions and substantially documented from India with a phenetic approach. Herewith we report the first set of mt DNA barcode from a vouchered collection for the species from southern Western Ghats India. Discussions are made on the identity of two sequences each of Blatteria species and Pycnoscelus species reported from USA.


Author(s):  
Donald Hobern ◽  
Paul Hebert

Between 2010 and 2015, the International Barcode of Life (iBOL) consortium successfully completed the BARCODE 500K project, a $125 million effort that delivered DNA barcode coverage for 500,000 species. BIOSCAN is a seven-year program (2019-2025) that builds on this foundation, expanding coverage of the barcode reference library to two million species and operationalising metabarcoding for eukaryote communities globally. BIOSCAN will scan species assemblages from at least 2,500 ecosystems and will codify species interactions for at least 2,500 sites. DNA barcoding is a well-established approach for rapid, cost-effective species diagnosis, with many applications in support of taxonomy, biosecurity, conservation, and monitoring. Uptake has been particularly significant in hyperdiverse invertebrate groups where morphological approaches to species identification are often limiting (because of the scale of diversity and the small number of expert taxonomists) or inapplicable (for example in associating individuals from different life stages). The barcode reference library maintained as BOLD Systems by the Centre for Biodiversity Genomics in Guelph, Ontario is a significant biodiversity informatics infrastructure for bridging genomics and classical taxonomy, collections research, and field surveys. Effort across multiple years in Canada has delivered a library of reference sequences for the COI mitochondrial barcode that covers most of the known insect fauna for the country, enabling a comprehensive assessment of Canadian arthropod diversity (Hebert et al. 2016, Langor and Sheffield 2019). The Global Malaise Trap Program is expanding lessons learned in Canada to support species inventories in new regions such as Kruger National Park in South Africa. As DNA barcode libraries approach completeness for any site, analysis can employ metabarcoding to lower costs significantly for monitoring programs that track changes in species composition. Data from this program, and from barcode-based exploration in other regions, will greatly expand the fraction of biodiversity that can be monitored and compared over time and space. GBIF has collected more than one billion species records, but around 60% of these are for birds, with another 25% for vascular plants. Metabarcoding offers the opportunity for a wider selection of taxa to be included in global data sets and in support of local conservation and planning. The BIOSCAN program, launched by iBOL in 2019, seeks to operationalise DNA barcoding at the global scale for development of species inventories and preliminary exploration of undescribed diversity, for surveying community composition across the world's ecosystems, and codifying species interactions (the symbiome). BIOSCAN will exploit the latest advances in sequencing platforms to lower costs, increase precision, and accelerate processing of samples, to speed the uptake of DNA barcoding for protecting life on Earth.


2020 ◽  
Vol 42 (4) ◽  
Author(s):  
Nguyen Thi Dinh

DNA barcoding is a useful tool in identifying species, biodiversity assessment, and revealing phylogenetic relationships of living organisms in the world. However, the DNA barcode data for leaf beetles in Vietnam is lacking. In this study, sixteen DNA sequences of 658 bp of COI gene from nine species (five genera; three subfamilies) of Chrysomelidae in Vietnam were (obtained). Intra- and inter-specific diversities, and phylogenetic relationships of these species were analyzed. 


2011 ◽  
Vol 18 (1) ◽  
pp. 89-91
Author(s):  
Jan Węsławski

Biodiversity of the Arctic Ocean in the Face of Climate Change Global climate changes which has been observed over the recent years affects organisms occurring in the Arctic seas and the functioning of the whole maritime ecosystems there. The research note presents and briefly analyses the biological diversity of the Arctic Ocean and the most important factors which change the relations between organisms and the environment in the Arctic.


2020 ◽  
Vol 19 (2) ◽  
pp. 44-60
Author(s):  
APARNA SURESHCHANDRA KALAWATE ◽  
K. P. DINESH ◽  
A. SHABNAM

The genus Olepa is distributed in Palearctic and Oriental regions with more species in India and Sri Lanka. In the recent studies, morphological variations within the group were well established, with couple of first set of mt COI DNA barcodes for at least three species. In the present account, three new species and a new subspecies are described from the northern Western Ghats region of Maharashtra based on mt COI DNA barcode studies. Due to high morphological divergence and complete genetic homogeneity on the mt COI DNA, four morphotypes under two species are reported. Morphological and genital characters of male and female are provided along with their respective species morphotypes for the first time under this genus from India. The genitalia and the habitus of male and female are illustrated. Preliminary phylogenetic tree based on the mt COI DNA sequences available in the GenBank for the genus with the sequences for the new species also provided and discussed. Key words: new taxa, morphotype, Maharashtra, DNA barcoding, mt COI gene


Lankesteriana ◽  
2015 ◽  
Vol 7 (1-2) ◽  
Author(s):  
Guillaume Gigot ◽  
Jonathan Van Alphen-Stahl ◽  
Diego Bogarín ◽  
Jorge Warner ◽  
Mark Chase ◽  
...  

Recently, DNA barcoding has emerged as an effec- tive tool for species identification. This has the poten- tial for many useful applications in conservation, such as biodiversity inventories, forensics and trade sur- veillance. It is being developed as an inexpensive and rapid molecular technique using short and standard- ized DNA sequences for species identification.  


Sign in / Sign up

Export Citation Format

Share Document