An analysis of power consumption and performance in runtime hardware reconfiguration

2021 ◽  
Vol 1 (1) ◽  
pp. 1
Author(s):  
Denis Loubach
Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4089
Author(s):  
Kaiqiang Zhang ◽  
Dongyang Ou ◽  
Congfeng Jiang ◽  
Yeliang Qiu ◽  
Longchuan Yan

In terms of power and energy consumption, DRAMs play a key role in a modern server system as well as processors. Although power-aware scheduling is based on the proportion of energy between DRAM and other components, when running memory-intensive applications, the energy consumption of the whole server system will be significantly affected by the non-energy proportion of DRAM. Furthermore, modern servers usually use NUMA architecture to replace the original SMP architecture to increase its memory bandwidth. It is of great significance to study the energy efficiency of these two different memory architectures. Therefore, in order to explore the power consumption characteristics of servers under memory-intensive workload, this paper evaluates the power consumption and performance of memory-intensive applications in different generations of real rack servers. Through analysis, we find that: (1) Workload intensity and concurrent execution threads affects server power consumption, but a fully utilized memory system may not necessarily bring good energy efficiency indicators. (2) Even if the memory system is not fully utilized, the memory capacity of each processor core has a significant impact on application performance and server power consumption. (3) When running memory-intensive applications, memory utilization is not always a good indicator of server power consumption. (4) The reasonable use of the NUMA architecture will improve the memory energy efficiency significantly. The experimental results show that reasonable use of NUMA architecture can improve memory efficiency by 16% compared with SMP architecture, while unreasonable use of NUMA architecture reduces memory efficiency by 13%. The findings we present in this paper provide useful insights and guidance for system designers and data center operators to help them in energy-efficiency-aware job scheduling and energy conservation.


Electronics ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 346 ◽  
Author(s):  
Lili Shen ◽  
Ning Wu ◽  
Gaizhen Yan

By using through-silicon-vias (TSV), three dimension integration technology can stack large memory on the top of cores as a last-level on-chip cache (LLC) to reduce off-chip memory access and enhance system performance. However, the integration of more on-chip caches increases chip power density, which might lead to temperature-related issues in power consumption, reliability, cooling cost, and performance. An effective thermal management scheme is required to ensure the performance and reliability of the system. In this study, a fuzzy-based thermal management scheme (FBTM) is proposed that simultaneously considers cores and stacked caches. The proposed method combines a dynamic cache reconfiguration scheme with a fuzzy-based control policy in a temperature-aware manner. The dynamic cache reconfiguration scheme determines the size of the cache for the processor core according to the application that reaches a substantial amount of power consumption savings. The fuzzy-based control policy is used to change the frequency level of the processor core based on dynamic cache reconfiguration, a process which can further improve the system performance. Experiments show that, compared with other thermal management schemes, the proposed FBTM can achieve, on average, 3 degrees of reduction in temperature and a 41% reduction of leakage energy.


2018 ◽  
Vol 75 (5) ◽  
pp. 2837-2861 ◽  
Author(s):  
Ali Naghash Asadi ◽  
Mohammad Abdollahi Azgomi ◽  
Reza Entezari-Maleki

2020 ◽  
Vol 10 (15) ◽  
pp. 5386
Author(s):  
Yaoming Li ◽  
Zhan Su ◽  
Zhenwei Liang ◽  
Yu Li

The threshing gap of the thresher device for rice combine harvester has to be adjusted in real time based on different feed rates to ensure the operation efficiency in the harvesting process. However, adjusting the threshing gap by changing the position of concave grid may result in unevenness of threshing gap of the thresher device and further impact on the fluidity of material in the thresher device; in addition, it is also unavailable to adjust the threshing gap by changing the drum diameter when the rice combine harvester is in operation. In view of the above and based on axial flow threshing drum, the design of a variable-diameter threshing drum available for overall and rapid drum diameter adjustment and the research on diameter adjustment device as well as electronic control self-locking device were introduced in this study. Besides, stress analysis was implemented to the diameter adjustment device to ensure the stability of the variable-diameter threshing drum. Field experiment was implemented to identify the difference between the impacts brought to the threshing performance (grain-entrainment loss rate, damage rate, threshing efficiency, and threshing power consumption) by both methods for threshing gap adjustment. The experiment result shows that the drum adjustment method with variable-diameter drum features higher grain-entrainment loss rate, threshing efficiency, and threshing power consumption, yet stable in terms of consumption fluctuation, but a lower damage rate than their counterparts with concave adjustment method.


Sensors ◽  
2020 ◽  
Vol 20 (18) ◽  
pp. 5204
Author(s):  
Valery Nkemeni ◽  
Fabien Mieyeville ◽  
Pierre Tsafack

Wireless Sensor Network (WSN) applications that favor more local computations and less communication can contribute to solving the problem of high power consumption and performance issues plaguing most centralized WSN applications. In this study, we present a fully distributed solution, where leaks are detected in a water distribution network via only local collaborations between a sensor node and its close neighbors, without the need for long-distance transmissions via several hops to a centralized fusion center. A complete approach that includes the design, simulation, and physical measurements, showing how distributed computing implemented via a distributed Kalman filter improves the accuracy of leak detection and the power consumption is presented. The results from the physical implementation show that distributed data fusion increases the accuracy of leak detection while preserving WSN lifetime.


1991 ◽  
Vol 69 (3-4) ◽  
pp. 177-179
Author(s):  
Langis Roy ◽  
Malcolm G. Stubbs ◽  
James S. Wight

The design and performance of a high-gain, monolithic, broadband amplifier with extremely low power consumption are described. The amplifier, fabricated using a 0.5 μm GaAs depletion-mode MESFET (metal semiconductor field effect transistor) process, utilizes very small gate width devices to achieve a measured gain of 19 dB and a 0.1 to 2.1 GHz bandwidth with only 63 mW dc power dissipation. This is the lowest power consumption broadband MMIC (monolithic microwave integrated circuit) reported to date and is intended for mobile radio applications.


2012 ◽  
Vol 499 ◽  
pp. 232-237
Author(s):  
Jun Jun Xing ◽  
Shan Jun Li ◽  
Yan Lin Zhang

Targeting mountain orchards, which slope from 25 degrees to 45 degrees, the 7YGS-45 type self-propelled dual-track orchard transport was developed. Through designing,optimize the following key parameters such as power consumption、running speed、turning radius and slope angle, and have real operation performance test for dual-track orchard transport. The test shows that the transport’s maximum climbing slope is 47°, minimum turning radius is 8m, and it can satisfy the steady running with the speed of 1.1m/s-1.3m/s and capacity of 300kg. The 7YGS-45 type self-propelled dual-track orchard transport is not only suitable for transporting the fruits and fertilizers in mountain orchards, but also can be equipped with spraying and pruning machines to work.


2012 ◽  
Vol 2012 ◽  
pp. 1-17 ◽  
Author(s):  
Alexander Thomas ◽  
Michael Rückauer ◽  
Jürgen Becker

Since the introduction of the first reconfigurable devices in 1985 the field of reconfigurable computing developed a broad variety of architectures from fine-grained to coarse-grained types. However, the main disadvantages of the reconfigurable approaches, the costs in area, and power consumption, are still present. This contribution presents a solution for application-driven adaptation of our reconfigurable architecture at register transfer level (RTL) to reduce the resource requirements and power consumption while keeping the flexibility and performance for a predefined set of applications. Furthermore, implemented runtime adaptive features like online routing and configuration sequencing will be presented and discussed. A presentation of the prototype chip of this architecture designed in 90 nm standard cell technology manufactured by TSMC will conclude this contribution.


Sign in / Sign up

Export Citation Format

Share Document