Synthesis of Biodiesel Using Castor Oil under Microwave Radiation

Author(s):  
Hong Yuan ◽  
Bolun Yang ◽  
Hailiang Zhang ◽  
Xiaowei Zhou

The castor oil was adopted to synthesize biodiesel (Fatty Acid Methyl Ester, FAME) under microwave radiation. Acid catalysts (NaHSO4•H2O and AlCl3) and heterogeneous base catalyst (Na2CO3) were evaluated in the present study. The amounts of FAME in the product were analyzed by high performance liquid chromatography (HPLC). Experimental results show that the microwave radiation was an efficient method to enhance the reaction process. When the transesterification was carried out at 338 K, with 18:1 molar ratio of methanol to castor oil, 7.5wt% mass ratio of catalyst to castor oil, 200w microwave radiation power and 120 minutes reaction time, yields of 74, 73, 90% were obtained respectively using catalysts of NaHSO4•H2O, AlCl3 and Na2CO3. The energy consumed by microwave heating and conventional heating in transesterification were measured, and the results showed that the microwave heating consumed less energy than the conventional heating to achieve the same amount of FAME.

2013 ◽  
Vol 291-294 ◽  
pp. 300-306 ◽  
Author(s):  
Hong Yuan ◽  
Qing Shu

Two cesium phosphotungstate-derived solid acid catalysts (Cs2.5H0.5PW12 and Cs0.5H2.5PW12) were prepared. The resulting catalysts were characterized by powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), N2 adsorption and desorption isotherm and temperature programmed desorption of ammonia(NH3-TPD). The Cs2.5H0.5PW12 and Cs0.5H2.5PW12 were respectively used to catalyze the tranesterification of castor oil and methanol for the synthesis of biodiesel with the assistance of microwave. Results shown microwave radiation can greatly enhance the transesterification process when compared with conventional heating method. Cs2.5H0.5PW12 showed better catalyst performance than Cs0.5H2.5PW12. A maximum yield of 90% was obtained from the using of 30:1 molar ratio of methanol to castor oil and 15 wt % mass ratio of catalyst to castor oil at 343 K under microwave radiation after 4h.


2019 ◽  
Vol 31 (5) ◽  
pp. 1100-1104
Author(s):  
Jayashri N. Nair ◽  
Y.V.V. Satyanarayanamurthy ◽  
N.S.C. Chaitanya ◽  
M. Ramesh

The objective of the present work was to develop a heterogeneous base catalyst K2CO3/ZnO for transesterification of algae oil. This catalyst was prepared by wet impregnation method calcinated at high temperature of 600 °C. The catalyst was characterized by X-ray diffraction technique. The crude algae oil was degummed and its free fatty acid was reduced to 2 % by methanol treatment. Methanol was used to convert triglycerides to biodiesel using K2CO3/ZnO. The doping of 30 % K2CO3 on ZnO calcined at 600 °C was studied on biodiesel yield. The reaction parameters such as temperature, stirring rate, amount of catalyst, methanol to oil molar ratio on the yield of fatty acid methyl ester were investigated. Highest yield was obtained for 7 % catalyst, 9:1 methanol to molar ratio at 80 °C for 30 % K2CO3/ZnO. This study proved that the catalyst loading less than 5 % was unsuccessful in biodiesel yield. The physio-chemical properties of the produced algae biodiesel was determined as per ASTM test procedures.


Catalysts ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 246 ◽  
Author(s):  
Vincenzo Palma ◽  
Daniela Barba ◽  
Marta Cortese ◽  
Marco Martino ◽  
Simona Renda ◽  
...  

Since the late 1980s, the scientific community has been attracted to microwave energy as an alternative method of heating, due to the advantages that this technology offers over conventional heating technologies. In fact, differently from these, the microwave heating mechanism is a volumetric process in which heat is generated within the material itself, and, consequently, it can be very rapid and selective. In this way, the microwave-susceptible material can absorb the energy embodied in the microwaves. Application of the microwave heating technique to a chemical process can lead to both a reduction in processing time as well as an increase in the production rate, which is obtained by enhancing the chemical reactions and results in energy saving. The synthesis and sintering of materials by means of microwave radiation has been used for more than 20 years, while, future challenges will be, among others, the development of processes that achieve lower greenhouse gas (e.g., CO2) emissions and discover novel energy-saving catalyzed reactions. A natural choice in such efforts would be the combination of catalysis and microwave radiation. The main aim of this review is to give an overview of microwave applications in the heterogeneous catalysis, including the preparation of catalysts, as well as explore some selected microwave assisted catalytic reactions. The review is divided into three principal topics: (i) introduction to microwave chemistry and microwave materials processing; (ii) description of the loss mechanisms and microwave-specific effects in heterogeneous catalysis; and (iii) applications of microwaves in some selected chemical processes, including the preparation of heterogeneous catalysts.


2004 ◽  
Vol 821 ◽  
Author(s):  
Oxana V. Kharissova ◽  
Eder Zavala ◽  
Ubaldo Ortíz ◽  
Jorge L. Hernández-Piñero ◽  
Stanislav Soloviev

AbstractThis work is devoted to microwave heating of graphite, sucrose, calcined sucrose, and a mixture of graphite with sucrose to produce carbon nanotubes (CNT's). The samples were submitted to microwave radiation (power 800W, frequency 2.45 GHz) in air and high vacuum (10−5Torr) for 30 – 60 min. The oven temperature was approximately 1200°C. After vaporization the condensed material was collected on various fused silica targets (different morphologies were used). The samples were found to contain a significant proportion of nanotubes, nanoparticles and fibers (1-2.8 micrometers), which appeared to be highly graphitized and helical structured. After deposition, the morphology of carbon nanotubes was studied with SEM, TEM and AFM techniques. It was observed that multi-walled nanotubes (MWNT's) were produced by this method. The morphology of fused silicon based substrates (SiO2, SiC) was studied as an important factor for the growth of carbon nanotubes. Many aspects as the size and shape of the obtained nanotubes on different substrates (porous and non-porous fused silicon substrates) were achieved, as well as the concentration of them across the substrate and other properties.


2021 ◽  
Author(s):  
Olayomi Abiodun Falowo ◽  
Babatunde Oladipo ◽  
Abiola Ezekiel Taiwo ◽  
Tomiwa Ayomiposi Olaiya ◽  
Oluwaseun Oyekola ◽  
...  

Abstract Economical feedstocks such as agricultural wastes, food wastes, and waste cooking oil were used for biodiesel production to expand their application. Thus, a solid base catalyst was synthesized from a mixture of ripe and unripe plantain peels at a calcination temperature of 500 oC for 4 h. The catalyst was characterized using Scanning Electron Microscope (SEM), X-ray Diffraction (XRD) analysis, Fourier Transform Infrared (FT-IR) spectroscopy, Energy dispersive X-ray (EDX) analysis, and Brunauer-Emmett-Teller (BET) method. The waste cooking oil (WCO) used in this study was first pretreated with 3% (v/v) of H2SO4 via esterification reaction due to its high acid value. The esterified WCO was converted to biodiesel via transesterification reaction, and the process was then modeled and optimized using Taguchi L9 orthogonal array design method considering reaction temperature, reaction time, catalyst amount, and methanol/WCO molar ratio as the input variables. Based on the results, the synthesized catalyst predominantly contained potassium phases with 45.16 wt.%. The morphology of the catalyst revealed a crystalline mesoporous nanocomposite. At the end of WCO esterification, the acidity of the oil decreased from 5 to 1 mg KOH/g. The optimal conditions established for the transesterification process were catalyst amount of 0.5 wt.%, methanol/WCO molar ratio of 6:1, reaction temperature of 45 oC, and reaction time of 45 min with a corresponding biodiesel yield of 97.96 wt.%. The quality of the biodiesel produced satisfied the specifications (ASTM D6751 and EN 14241) recommended for biodiesel fuels. Hence, a blend of ripe and unripe plantain peels could serve as an efficient heterogeneous base catalyst in producing biodiesel from WCO.


2016 ◽  
Vol 78 (8-3) ◽  
Author(s):  
Mohd Johari Kamaruddin ◽  
Nurulsurusiah Mohamad ◽  
Umi Aisah Asli ◽  
Muhammad Abbas Ahmad Zaini ◽  
Kamarizan Kidam ◽  
...  

This research is focused on the effect of processing parameters such as molar ratio of sample to solvent (1:3-1:15), catalyst loading (0.5-2.5 wt %), temperature (40-80 °C) and time of reaction (5-180 min) on the transesterification yield of waste cooking oil (WCO) in conventional thermal heating and microwave heating techniques. The analysis carried out revealed that the microwave assisted transesterification produced a comparable yield to conventional heating transesterification with ~5 times faster in heating up the reaction mixture to a reaction temperature and reduced ~90% of the reaction time required. This study concludes that microwave assisted transesterification, which is a green technology, may have great potential in reducing the processing time compared to conventional thermal heating transesterification.


Author(s):  
Andreas Rosin ◽  
Michael Hader ◽  
Corinna Drescher ◽  
Magdalena Suntinger ◽  
Thorsten Gerdes ◽  
...  

PurposeThis paper aims to investigate in a self-designed closed loop reactor process conditions for thermal inactivation of B16 melanoma cells by microwave and conventional heating.Design/methodology/approachBesides control experiments (37°C), inactivation rate was determined in the range from 42°C to 46°C. Heating was achieved either by microwave radiation at 2.45 GHz or by warm water. To distinguish viable from dead cells, AnnexinV staining method was used and supported by field effect scanning electron microscopy (FE-SEM) imaging. Furthermore, numerical simulations were done to get a closer look into both heating devices. To investigate the thermal influence on cell inactivation and the differences between heating methods, a reaction kinetics approach was added as well.FindingsControl experiments and heating at 42°C resulted in low inactivation rates. Inactivation rate at 44°C remained below 12% under conventional, whereas it increased to >70% under microwave heating. At 46°C, inactivation rate attained 68% under conventional heating; meanwhile, even 88% were determined under microwave heating. FE-SEM images showed a porous membrane structure under microwave heating in contrast to mostly intact conventional heated cells. Numerical simulations of both heating devices and a macroscopic Arrhenius approach could not sufficiently explain the observed differences in inactivation.Originality/valueA combination of thermal and electrical effects owing to microwave heating results in higher inactivation rates than conventional heating achieves. Nevertheless, it was not possible to determine the exact mechanisms of inactivation under microwave radiation.


Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 8018
Author(s):  
Anna Nowicka ◽  
Marcin Zieliński ◽  
Marcin Dębowski ◽  
Magda Dudek

One of the most effective technologies involving the use of lignocellulosic biomass is the production of biofuels, including methane-rich biogas. In order to increase the amount of gas produced, it is necessary to optimize the fermentation process, for example, by substrate pretreatment. The present study aimed to analyze the coupled effects of microwave radiation and the following acids: phosphoric(V) acid (H3PO4), hydrochloric acid (HCl), and sulfuric(VI) acid (H2SO4), on the destruction of a lignocellulosic complex of maize silage biomass and its susceptibility to anaerobic degradation in the methane fermentation process. The study compared the effects of plant biomass (maize silage) disintegration using microwave and conventional heating; the criterion differentiating experimental variants was the dose of acid used, i.e., 10% H3PO4, 10% HCl, and 10% H2SO4 in doses of 0.02, 0.05, 0.10, 0.20, and 0.40 g/gTS. Microwave heating caused a higher biogas production in the case of all acids tested (HCl, H2SO4, H3PO4). The highest biogas volume, exceeding 1800 L/kgVS, was produced in the variant with HCl used at a dose of 0.4 g/gTS.


Author(s):  
Hong Yuan ◽  
Xiaoqin Ma ◽  
Jie He ◽  
Zhaoyang Dong

AbstractThe solid acid catalysts SO42−/Fe2O3were prepared by impregnation technique, and the preparation conditions were different in calcination temperature, concentration of impregnation solution of H2SO4and impregnation time. The characterization was performed by using Fourier transform infrared spectrometer (FTIR), X-ray diffraction (XRD), Temperature programed desorption of NH3(NH3‒TPD), N2‒BET and microwave absorbing test. As shown by FTIR spectra, the S=O functional group existed in the sample, which was essential for the strong acidity of the SO42‒/MxOytype solid acids. The XRD results indicated that when the calcination temperature exceeded 400℃, iron in SO42‒/Fe2O3transformed from amorphous to crystalline phase. The results from NH3-TPD showed that the prepared sample possessed strong acid and superacid sites. As shown by N2-BET results, the BET surface area of the samples was up to 200m2/g, and their pore size distributions essentially belonged to mesoporous characteristic distribution. The SO42−/Fe2O3solid acid catalysts were used for the transesterification of castor oil under microwave radiation to produce biodiesel. The amounts of FAME in the product were analyzed by high-performance liquid chromatography. The highest yield of product was 65.3 wt.% when the reaction temperature was 65 ℃, alcohol/oil molar ratio was 30/1, catalyst loading was 20 wt.%, the reaction time was 3 h and the power of microwave was 300 w. Furthermore, the reaction results showed that SO42‒/Fe2O3had better catalytic activity under microwave radiation than under conventional heating condition.


2016 ◽  
Vol 833 ◽  
pp. 71-77 ◽  
Author(s):  
Yie Hua Tan ◽  
Mohammad Omar Abdullah ◽  
Cirilo Nolasco Hipolito

Homogeneous base catalyst has wide acceptability in biodiesel production because of their fast reaction rates. However, postproduction costs incurred from aqueous quenching, wastewater and loss of catalysts led to the search for alternatives. Heterogeneous base catalyst is developed to cater these problems. The advantages of heterogeneous catalyst are their high basicity and non-toxicity. This work compared the production of biodiesel using two different kind of catalysts that is homogeneous catalyst (sodium hydroxide, NaOH and potassium hydroxide, KOH) and heterogeneous catalysts (calcium, oxide, CaO catalyst derived from chicken and ostrich eggshells). Transesterification of waste cooking oil (WCO) and methanol in the presence of heterogeneous base catalyst was conducted at an optimal reaction condition (calcination temperature for catalyst: 1000 °C; catalyst loading amount: 1.5 wt%; methanol/oil molar ratio: 10:1; reaction temperature: 65 °C; reaction time: 2 hours) with 97% biodiesel yield was obtained. While, the homogeneous base catalyst gave higher biodiesel yield of 98% at optimum operating condition (catalyst concentration: 0.75 wt%; methanol/oil molar ratio: 6:1; reaction temperature: 65 °C; reaction time: 1 hours). The slight difference in the biodiesel yield was due to the stronger basic strength in the homogeneous catalyst and were not statistically not different (p=0.05). However, despite these advances, the ultimate aim of producing biodiesel at affordable low cost and minimal-environmental-impact is yet to be realized.


Sign in / Sign up

Export Citation Format

Share Document