MOLECULAR MECHANISMS UNDERLYING ACETYLCHOLINE RELEASE

1985 ◽  
pp. 77-90
Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Grigorios Katsouras ◽  
Masao Sakabe ◽  
Kristina Lemola ◽  
Philippe Comtois ◽  
Michael Ting ◽  
...  

Background: Vagal (VG) and atrial tachycardia remodeled (ATR) AF substrates share many features: reduced effective refractory period (ERP), increased ERP heterogeneity and some common molecular mechanisms (I KACh enhancement by acetylcholine release in VG, constitutive I KACh enhancement in ATR). This study compared VG and ATR substrates at comparable ERP abbreviation. Methods: In each of 5 VG dogs, bilateral cervical VG stimulation parameters were adjusted (mean±SD: 3.6±1.7 V and 12.2±1.5 Hz; 0.2 ms) to produce the same mean ERP (at 4 RA and 4 LA sites) as a sex and weight matched ATR dog (RA paced 400 bpm × 7 days). Mean duration of burst pacing induced AF (DAF) and local dominant frequencies (DFs, analyzed by FFT at 240 bipolar electrodes, Fig A ) were determined. Results: Mean ERP was 79±13 ms in VG and 78±13 ms in ATR dogs. DAF was greater in VG than ATR dogs (1056±323 vs 289±510 s *P<0.01; both significantly > control, 43±61 s). Despite matched ERPs, there were significant differences in DF distribution (Fig B ): DF was faster (mean DF: 11.8±1.1 Hz VG vs 9.7±1.3 Hz ATR*) and DF variability greater (indicated by SD: 1.8±0.6 Hz VG vs 0.8±0.5 Hz ATR*) in VG dogs. AF drivers reflected by maximum DF zones were adjacent to autonomic ganglia (over RA in 4/5) for VG dogs; in ATR dogs driver zones were less clear and showed variable location. Conclusions: For a comparable atrial ERP, VG AF is faster and more persistent than AF with an ATR substrate. These results are consist with modeling work suggesting that VG-induced hyperpolarization is an important contributor to AF-maintaining rotor stabilization and acceleration, and indicate important differences between these superficially similar AF substrates.


2021 ◽  
Vol 22 (9) ◽  
pp. 4611
Author(s):  
Ellya Bukharaeva ◽  
Venera Khuzakhmetova ◽  
Svetlana Dmitrieva ◽  
Andrei Tsentsevitsky

Adrenoceptor activators and blockers are widely used clinically for the treatment of cardiovascular and pulmonary disorders. More recently, adrenergic agents have also been used to treat neurodegenerative diseases. Recent studies indicate a location of sympathetic varicosities in close proximity to neuromuscular junctions. The pressing question is whether there could be any effects of endo- or exogenous catecholamines on cholinergic neuromuscular transmission. It was shown that the pharmacological stimulation of adrenoceptors, as well as sympathectomy, can affect both acetylcholine release from motor nerve terminals and the functioning of postsynaptic acetylcholine receptors. In this review, we discuss the recent data regarding the effects of adrenergic drugs on neurotransmission at the neuromuscular junction. The elucidation of the molecular mechanisms by which the clinically relevant adrenomimetics and adrenoblockers regulate quantal acetylcholine release from the presynaptic nerve terminals and postsynaptic sensitivity may help in the design of highly effective and well-tolerated sympathomimetics for treating a number of neurodegenerative diseases accompanied by synaptic defects.


1996 ◽  
Vol 84 (4) ◽  
pp. 945-954. ◽  
Author(s):  
J. C. Keifer ◽  
H. A. Baghdoyan ◽  
R. Lydic

Background Halothane anesthesia causes spindles in the electroencephalogram (EEG), but the cellular and molecular mechanisms generating these spindles remain incompletely understood. The current study tested the hypothesis that halothane-induced EEG spindles are regulated, in part, by pontine cholinergic mechanisms. Methods Adult male cats were implanted with EEG electrodes and trained to sleep in the laboratory. Approximately 1 month after surgery, animals were anesthetized with halothane and a microdialysis probe was stereotaxically placed in the medial pontine reticular formation (mPRF). Simultaneous measurements were made of mPRF acetylcholine release and number of cortical EEG spindles during halothane anesthesia and subsequent wakefulness. In additional experiments, carbachol (88 mM) ws microinjected in the the mPRF before halothane anesthesia to determine whether enhanced cholinergic neurotransmission in the MPRF would block the ability of halothane to induce cortical EEG spindles. Results During wakefulness, mPRF acetylcholine release averaged 0.43 pmol/10 min of dialysis. Halothane at 1 minimum alveolar concentration decreased acetylcholine release (0.25 pmol/10 min) while significantly increasing the number of cortical EEG spindles. Cortical EEG spindles caused by 1 minimum alveolar concentration halothane were not significantly different in waveform, amplitude, or number from the EEG spindles of nonrapid eye movement sleep. Microinjection of carbachol into the mPRF before halothane administration caused a significant reduction in number of halothane-induced EEG spindles. Conclusions Laterodorsal and pedunculopontine tegmental neurons, which provide cholinergic input to the mPRF, play a causal role in generating the EEG spindles of halothane anesthesia.


Author(s):  
David P. Bazett-Jones ◽  
Mark L. Brown

A multisubunit RNA polymerase enzyme is ultimately responsible for transcription initiation and elongation of RNA, but recognition of the proper start site by the enzyme is regulated by general, temporal and gene-specific trans-factors interacting at promoter and enhancer DNA sequences. To understand the molecular mechanisms which precisely regulate the transcription initiation event, it is crucial to elucidate the structure of the transcription factor/DNA complexes involved. Electron spectroscopic imaging (ESI) provides the opportunity to visualize individual DNA molecules. Enhancement of DNA contrast with ESI is accomplished by imaging with electrons that have interacted with inner shell electrons of phosphorus in the DNA backbone. Phosphorus detection at this intermediately high level of resolution (≈lnm) permits selective imaging of the DNA, to determine whether the protein factors compact, bend or wrap the DNA. Simultaneously, mass analysis and phosphorus content can be measured quantitatively, using adjacent DNA or tobacco mosaic virus (TMV) as mass and phosphorus standards. These two parameters provide stoichiometric information relating the ratios of protein:DNA content.


Author(s):  
G-A. Keller ◽  
S. J. Gould ◽  
S. Subramani ◽  
S. Krisans

Subcellular compartments within eukaryotic cells must each be supplied with unique sets of proteins that must be directed to, and translocated across one or more membranes of the target organelles. This transport is mediated by cis- acting targeting signals present within the imported proteins. The following is a chronological account of a series of experiments designed and carried out in an effort to understand how proteins are targeted to the peroxisomal compartment.-We demonstrated by immunocryoelectron microscopy that the enzyme luciferase is a peroxisomal enzyme in the firefly lantern. -We expressed the cDNA encoding firefly luciferase in mammalian cells and demonstrated by immunofluorescence that the enzyme was transported into the peroxisomes of the transfected cells. -Using deletions, linker insertions, and gene fusion to identify regions of luciferase involved in its transport to the peroxisomes, we demonstrated that luciferase contains a peroxisomal targeting signal (PTS) within its COOH-terminal twelve amino acid.


Author(s):  
D. P. Bazett-Jones ◽  
M. J. Hendzel

Structural analysis of combinations of nucleosomes and transcription factors on promoter and enhancer elements is necessary in order to understand the molecular mechanisms responsible for the regulation of transcription initiation. Such complexes are often not amenable to study by high resolution crystallographic techniques. We have been applying electron spectroscopic imaging (ESI) to specific problems in molecular biology related to transcription regulation. There are several advantages that this technique offers in studies of nucleoprotein complexes. First, an intermediate level of spatial resolution can be achieved because heavy atom contrast agents are not necessary. Second, mass and stoichiometric relationships of protein and nucleic acid can be estimated by phosphorus detection, an element in much higher proportions in nucleic acid than protein. Third, wrapping or bending of the DNA by the protein constituents can be observed by phosphorus mapping of the complexes. Even when ESI is used with high exposure of electrons to the specimen, important macromolecular information may be provided. For example, an image of the TATA binding protein (TBP) bound to DNA is shown in the Figure (top panel). It can be seen that the protein distorts the DNA away from itself and much of its mass sits off the DNA helix axis. Moreover, phosphorus and mass estimates demonstrate whether one or two TBP molecules interact with this particular promoter TATA sequence.


2020 ◽  
Vol 48 (3) ◽  
pp. 1019-1034 ◽  
Author(s):  
Rachel M. Woodhouse ◽  
Alyson Ashe

Gene regulatory information can be inherited between generations in a phenomenon termed transgenerational epigenetic inheritance (TEI). While examples of TEI in many animals accumulate, the nematode Caenorhabditis elegans has proven particularly useful in investigating the underlying molecular mechanisms of this phenomenon. In C. elegans and other animals, the modification of histone proteins has emerged as a potential carrier and effector of transgenerational epigenetic information. In this review, we explore the contribution of histone modifications to TEI in C. elegans. We describe the role of repressive histone marks, histone methyltransferases, and associated chromatin factors in heritable gene silencing, and discuss recent developments and unanswered questions in how these factors integrate with other known TEI mechanisms. We also review the transgenerational effects of the manipulation of histone modifications on germline health and longevity.


2020 ◽  
Vol 48 (2) ◽  
pp. 429-439 ◽  
Author(s):  
Jorge Gago ◽  
Danilo M. Daloso ◽  
Marc Carriquí ◽  
Miquel Nadal ◽  
Melanie Morales ◽  
...  

Besides stomata, the photosynthetic CO2 pathway also involves the transport of CO2 from the sub-stomatal air spaces inside to the carboxylation sites in the chloroplast stroma, where Rubisco is located. This pathway is far to be a simple and direct way, formed by series of consecutive barriers that the CO2 should cross to be finally assimilated in photosynthesis, known as the mesophyll conductance (gm). Therefore, the gm reflects the pathway through different air, water and biophysical barriers within the leaf tissues and cell structures. Currently, it is known that gm can impose the same level of limitation (or even higher depending of the conditions) to photosynthesis than the wider known stomata or biochemistry. In this mini-review, we are focused on each of the gm determinants to summarize the current knowledge on the mechanisms driving gm from anatomical to metabolic and biochemical perspectives. Special attention deserve the latest studies demonstrating the importance of the molecular mechanisms driving anatomical traits as cell wall and the chloroplast surface exposed to the mesophyll airspaces (Sc/S) that significantly constrain gm. However, even considering these recent discoveries, still is poorly understood the mechanisms about signaling pathways linking the environment a/biotic stressors with gm responses. Thus, considering the main role of gm as a major driver of the CO2 availability at the carboxylation sites, future studies into these aspects will help us to understand photosynthesis responses in a global change framework.


2020 ◽  
Vol 134 (17) ◽  
pp. 2243-2262
Author(s):  
Danlin Liu ◽  
Gavin Richardson ◽  
Fehmi M. Benli ◽  
Catherine Park ◽  
João V. de Souza ◽  
...  

Abstract In the elderly population, pathological inflammation has been associated with ageing-associated diseases. The term ‘inflammageing’, which was used for the first time by Franceschi and co-workers in 2000, is associated with the chronic, low-grade, subclinical inflammatory processes coupled to biological ageing. The source of these inflammatory processes is debated. The senescence-associated secretory phenotype (SASP) has been proposed as the main origin of inflammageing. The SASP is characterised by the release of inflammatory cytokines, elevated activation of the NLRP3 inflammasome, altered regulation of acetylcholine (ACh) nicotinic receptors, and abnormal NAD+ metabolism. Therefore, SASP may be ‘druggable’ by small molecule therapeutics targeting those emerging molecular targets. It has been shown that inflammageing is a hallmark of various cardiovascular diseases, including atherosclerosis, hypertension, and adverse cardiac remodelling. Therefore, the pathomechanism involving SASP activation via the NLRP3 inflammasome; modulation of NLRP3 via α7 nicotinic ACh receptors; and modulation by senolytics targeting other proteins have gained a lot of interest within cardiovascular research and drug development communities. In this review, which offers a unique view from both clinical and preclinical target-based drug discovery perspectives, we have focused on cardiovascular inflammageing and its molecular mechanisms. We have outlined the mechanistic links between inflammageing, SASP, interleukin (IL)-1β, NLRP3 inflammasome, nicotinic ACh receptors, and molecular targets of senolytic drugs in the context of cardiovascular diseases. We have addressed the ‘druggability’ of NLRP3 and nicotinic α7 receptors by small molecules, as these proteins represent novel and exciting targets for therapeutic interventions targeting inflammageing in the cardiovascular system and beyond.


2012 ◽  
Vol 21 (1) ◽  
pp. 15-21
Author(s):  
Merete Bakke ◽  
Allan Bardow ◽  
Eigild Møller

Severe drooling is associated with discomfort and psychosocial problems and may constitute a health risk. A variety of different surgical and non-surgical treatments have been used to diminish drooling, some of them with little or uncertain effect and others more effective but irreversible or with side effects. Based on clinical evidence, injection with botulinum toxin (BTX) into the parotid and submandibular glands is a useful treatment option, because it is local, reversible, and with few side effects, although it has to be repeated. The mechanism of BTX is a local inhibition of acetylcholine release, which diminishes receptor-coupled secretion and results in a flow rate reduction of 25–50% for 2–7 months.


Sign in / Sign up

Export Citation Format

Share Document