scholarly journals Ovule Structure of Scotch thistle Onopordum acanthium L. (Cynareae, Asteraceae)

2016 ◽  
Vol 58 (1) ◽  
pp. 19-28 ◽  
Author(s):  
Jolanta Kolczyk ◽  
Piotr Stolarczyk ◽  
Bartosz J. Płachno

AbstractStudies concerning the ultrastructure of the periendothelial zone integumentary cells of Asteraceae species are scarce. The aim was to check whether and/or what kinds of integument modifications occur inOnopordum acanthium. Ovule structure was investigated using light microscopy, scanning electron microscopy, transmission electron microscopy and histochemistry. For visualization of calcium oxalate crystals, the polarizing microscopy was used. The periendothelial zone of integument inO. acanthiumis well developed and composed of mucilage cells near the integumentary tapetum and large, highly vacuolated cells at the chalaza and therefore they differ from other integumentary cells. The cells of this zone lack starch and protein bodies. Periendothelial zone cells do not have calcium oxalate crystals, in contrast to other integument cells. The disintegration of periendothelial zone cells was observed in a mature ovule. The general ovule structure ofO. acanthiumis similar to other members of the subfamily Carduoideae, although it is different to “Taraxacum”, “Galinsoga” and “Ratibida” ovule types.

Author(s):  
Vicki L. Baliga ◽  
Mary Ellen Counts

Calcium is an important element in the growth and development of plants and one form of calcium is calcium oxalate. Calcium oxalate has been found in leaf seed, stem material plant tissue culture, fungi and lichen using one or more of the following methods—polarized light microscopy (PLM), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and x-ray diffraction.Two methods are presented here for qualitatively estimating calcium oxalate in dried or fixed tobacco (Nicotiana) leaf from different stalk positions using PLM. SEM, coupled with energy dispersive x-ray spectrometry (EDS), and powder x-ray diffraction were used to verify that the crystals observed in the dried leaf with PLM were calcium oxalate.


1997 ◽  
Vol 92 (2) ◽  
pp. 205-213 ◽  
Author(s):  
Phulwinder K. Grover ◽  
Rosemary L. Ryall

1. The aim of this study was to determine whether seed crystals of uric acid or monosodium urate promote the epitaxial deposition of calcium oxalate in undiluted human urine. The effects of seed crystals of uric acid, monosodium urate or calcium oxalate on calcium oxalate crystallization induced in pooled 24-h urine samples collected from six healthy men were determined by [14C]oxalate deposition and Coulter counter particle analysis. The precipitated crystals were examined by scanning electron microscopy. 2. Seed crystals of uric acid, monosodium urate and calcium oxalate increased the precipitated particle volume in comparison with the control containing no seeds by 13.6%, 56.8% and 206.5% respectively, whereas the deposition of [14C]oxalate in these samples relative to the control was 1.4% (P < 0.05), 5.2% (P < 0.01) and 54% (P < 0.001) respectively. The crystalline particles deposited in the presence of monosodium urate seeds were smaller than those in the control samples. Scanning electron microscopy showed that large aggregates of calcium oxalate were formed in the presence of calcium oxalate seeds, which themselves were not visible. In contrast, monosodium urate and, to a lesser extent, uric acid seeds were scattered free on the membrane surfaces and attached like barnacles upon the surface of the calcium oxalate crystals. 3. It was concluded that seed crystals of monosodium urate and uric acid do not promote calcium oxalate deposition to a physiologically significant degree in urine. Howsever, binding of monosodium urate and uric acid crystals and their subsequent enclosure within actively growing calcium oxalate crystals might occur in vivo, thereby explaining the occurrence of mixed urate/oxalate stones.


2007 ◽  
Vol 85 (5) ◽  
pp. 501-517 ◽  
Author(s):  
Walter P. Hartl ◽  
Helmut Klapper ◽  
Bruno Barbier ◽  
Hans Jürgen Ensikat ◽  
Richard Dronskowski ◽  
...  

The occurrence of various types of calcium oxalate crystals was studied in 251 species and subspecies of Cactaceae to determine whether they are useful characters for Cactaceae systematics. Crystal hydration states were identified by X-ray powder diffraction and polarizing microscopy as monoclinic calcium oxalate monohydrate (COM) and tetragonal calcium oxalate dihydrate (COD). Ninety-eight percent of taxa studied contained either COM or COD crystals, or both. Different morphologies of crystals were further defined by light microscopy and scanning electron microscopy as druses, raphides, styloids (prisms), and crystal sand. In particular, the preponderance of one of the hydration states (COM or COD) was characteristic for certain Cactus subfamilies. Data showed that in Pereskioideae, Maihuenioideae, and Opuntioideae COM is predominant, while in Cactoideae COD prevails. In the remainder of Cactoideae, the crystals were quite variable. In tribe Hylocereeae, many species form both COM and COD as well. In the genera Hylocereus , Epiphyllum , Selenicereus , and Weberocereus , COM forms were almost exclusively represented by raphides together with different crystal forms in their epidermal cells. In the remainder of the Cactoideae, crystals did not follow any observable patterns. Development of crystallographic standards for identifying crystal forms microscopically is proposed for future crystal studies.


Botany ◽  
2008 ◽  
Vol 86 (1) ◽  
pp. 45-52 ◽  
Author(s):  
Denis Barabé ◽  
Christian Lacroix

The early stages of development of the inflorescence of Anthurium jenmanii Engl. were examined using scanning electron microscopy. The inflorescence of A. jenmanii consists of more than 100 flowers arranged in recognizable spirals. Each flower has four broad tepals enclosing four stamens that are not visible prior to anthesis. The gynoecium consists of two carpels. The floral primordia are first initiated on the lower portion of the inflorescence, they then increase in size and appear as transversely extended bulges. The two lateral tepals are the first organs to be initiated, followed shortly thereafter by the two median tepals. The two lateral stamens are initiated first, directly opposite the lateral tepals, and are followed by two median stamens initiated directly opposite the median tepals. A two-lobed stigma is clearly visible during the early stages of development of the gynoecium. On some of the young inflorescences, all floral parts were covered by extracellular calcium oxalate crystals. The release of these prismatic crystals occurs before the stamens and petals have reached maturity. The mode of floral development observed in Anthurium has similarities with that reported for Gymnostachys . However, contrary to Gymnostachys, the development of the flower of A. jenmanii is not unidirectional.


1982 ◽  
Vol 60 (6) ◽  
pp. 1021-1027 ◽  
Author(s):  
Harry T. Horner ◽  
Elisabeth Zindler-Frank

Crystals from species of Rhynchosia, Phaseolus, Canavalia, and Begonia were observed in cleared leaves and their specific locations were noted. Crystals were isolated from leaves, purified, verified for shape with scanning electron microscopy, and characterized as calcium monohydrate (whewellite; Rhynchosia, Phaseolus, and Canavalia) or dihydrate (weddellite; Begonia) by X-ray powder diffraction and infrared spectroscopy. A histochemical technique for calcium oxalate localization was applied to the cleared leaves to complement the physical identifications of the crystals. This histochemical localization (using silver nitrate and rubeanic acid) is specific and represents a simple method for in situ identification of calcium oxalate.


Author(s):  
P.J. Dailey

The structure of insect salivary glands has been extensively investigated during the past decade; however, none have attempted scanning electron microscopy (SEM) in ultrastructural examinations of these secretory organs. This study correlates fine structure by means of SEM cryofractography with that of thin-sectioned epoxy embedded material observed by means of transmission electron microscopy (TEM).Salivary glands of Gromphadorhina portentosa were excised and immediately submerged in cold (4°C) paraformaldehyde-glutaraldehyde fixative1 for 2 hr, washed and post-fixed in 1 per cent 0s04 in phosphosphate buffer (4°C for 2 hr). After ethanolic dehydration half of the samples were embedded in Epon 812 for TEM and half cryofractured and subsequently critical point dried for SEM. Dried specimens were mounted on aluminum stubs and coated with approximately 150 Å of gold in a cold sputtering apparatus.Figure 1 shows a cryofractured plane through a salivary acinus revealing topographical relief of secretory vesicles.


Author(s):  
Nakazo Watari ◽  
Yasuaki Hotta ◽  
Yoshio Mabuchi

It is very useful if we can observe the identical cell elements within the same sections by light microscopy (LM), transmission electron microscopy (TEM) and/or scanning electron microscopy (SEM) sequentially, because, the cell fine structure can not be indicated by LM, while the color is; on the other hand, the cell fine structure can be very easily observed by EM, although its color properties may not. However, there is one problem in that LM requires thick sections of over 1 μm, while EM needs very thin sections of under 100 nm. Recently, we have developed a new method to observe the same cell elements within the same plastic sections using both light and transmission (conventional or high-voltage) electron microscopes.In this paper, we have developed two new observation methods for the identical cell elements within the same sections, both plastic-embedded and paraffin-embedded, using light microscopy, transmission electron microscopy and/or scanning electron microscopy (Fig. 1).


Author(s):  
Jane A. Westfall ◽  
S. Yamataka ◽  
Paul D. Enos

Scanning electron microscopy (SEM) provides three dimensional details of external surface structures and supplements ultrastructural information provided by transmission electron microscopy (TEM). Animals composed of watery jellylike tissues such as hydras and other coelenterates have not been considered suitable for SEM studies because of the difficulty in preserving such organisms in a normal state. This study demonstrates 1) the successful use of SEM on such tissue, and 2) the unique arrangement of batteries of nematocysts within large epitheliomuscular cells on tentacles of Hydra littoralis.Whole specimens of Hydra were prepared for SEM (Figs. 1 and 2) by the fix, freeze-dry, coat technique of Small and Màrszalek. The specimens were fixed in osmium tetroxide and mercuric chloride, freeze-dried in vacuo on a prechilled 1 Kg brass block, and coated with gold-palladium. Tissues for TEM (Figs. 3 and 4) were fixed in glutaraldehyde followed by osmium tetroxide. Scanning micrographs were taken on a Cambridge Stereoscan Mark II A microscope at 10 KV and transmission micrographs were taken on an RCA EMU 3G microscope (Fig. 3) or on a Hitachi HU 11B microscope (Fig. 4).


Author(s):  
J. D. Hutchison

When the transmission electron microscope was commercially introduced a few years ago, it was heralded as one of the most significant aids to medical research of the century. It continues to occupy that niche; however, the scanning electron microscope is gaining rapidly in relative importance as it fills the gap between conventional optical microscopy and transmission electron microscopy.IBM Boulder is conducting three major programs in cooperation with the Colorado School of Medicine. These are the study of the mechanism of failure of the prosthetic heart valve, the study of the ultrastructure of lung tissue, and the definition of the function of the cilia of the ventricular ependyma of the brain.


Sign in / Sign up

Export Citation Format

Share Document