scholarly journals Identification and characterisation of oil sludge degrading bacteria isolated from compost

2016 ◽  
Vol 42 (2) ◽  
pp. 67-77 ◽  
Author(s):  
Onyedikachi Ubani ◽  
Harrison Ifeanyichukwu Atagana ◽  
Mapitsi Silvester Thantsha ◽  
Adeleke Rasheed

AbstractCompounds present in oil sludge such as polycyclic aromatic hydrocarbons (PAHs) are known to be cytotoxic, mutagenic and potentially carcinogenic. Microorganisms including bacteria and fungi have been reported to degrade oil sludge components to innocuous compounds such as carbon dioxide, water and salts. In the present study, we isolated different bacteria with PAH-degrading capabilities from compost prepared from oil sludge and animal manures. These bacteria were isolated on a mineral base medium and mineral salt agar plates. A total of 31 morphologically distinct isolates were carefully selected from 5 different compost treatments for identification using polymerase chain reaction (PCR) of the 16S rRNA gene with specific primers (universal forward 16S-P1 PCR and reverse 16S-P2 PCR). The amplicons were sequenced and sequences were compared with the known nucleotides from the GenBank. The phylogenetic analyses of the isolates showed that they belong to 3 different clades; Firmicutes, Proteobacteria and Actinobacteria. These bacteria identified were closely related to the generaBacillus, Arthrobacter, Staphylococcus, Brevibacterium, Variovorax, Paenibacillus, Ralstonia and Geobacillus.The results showed thatBacillus species were predominant in all composts. Based on the results of the degradation of the PAHs in the composts and results of previous studies on bacterial degradation of hydrocarbons in oil, the characteristics of these bacterial isolates suggests that they may be responsible for the breakdown of PAHs of different molecular weights in the composts. Thus, they may be potentially useful for bioremediation of oil sludge during compost bioremediation.

2014 ◽  
Vol 23 (3) ◽  
pp. 301-308 ◽  
Author(s):  
Renata Fernandes Ferreira ◽  
Aloysio de Mello Figueiredo Cerqueira ◽  
Tatiana Xavier de Castro ◽  
Eliane de Oliveira Ferreira ◽  
Felipe Piedade Gonçalves Neves ◽  
...  

The aim of this study was to characterize Ehrlichia canis strains from naturally infected dogs in Rio de Janeiro, Brazil. In addition, all the clinical and hematological findings observed in these dogs were reported. PCR targeting the 16S rRNA gene was used for diagnostic purposes, and the TRP19 and TRP36 genes were sequenced to evaluate the genetic diversity. Fifteen samples were positive for E. canis. The polymerase chain reaction for the TRP19 gene resulted in 11 amplicons (11/15), which were cloned into the pGEM-T easy vector for sequencing. The complete sequence of TRP19 gene was compared to those in the GenBank, revealing high identicalness. Phylogenetic analysis on the TRP36 gene sequences demonstrated two distinct strains from two dogs, named 56C and 70C. The 56C strain was grouped with the strain Cuiaba 16, which is a hybrid strain formed by Brazilian and US genogroups; and the 70C strain was grouped with other strains of the US genogroup, thus suggesting that there are at least two genogroups of E. canis in Rio de Janeiro (US and Brazilian). Those animals, in which the 70C and 56C strains were isolated, showed distinct clinical and hematological manifestations of 1the disease. The appearance of different genotypes may express new phenotypes, thus resulting in different forms of presentation of the disease and making its diagnosis more complex.


2007 ◽  
Vol 9 (3) ◽  
pp. 238-241 ◽  
Author(s):  
Francois Courtin ◽  
Michel Huerre ◽  
Janet Fyfe ◽  
Paul Dumas ◽  
Maria L. Boschiroli

A 2-year-old, 4 kg, healthy, domestic shorthair female cat presented with ulcerated subcutaneous nodules on the commissures of its mouth. The cat was negative for feline leukaemia virus and feline immunodeficiency virus. Skin mycobacteriosis was diagnosed after detection of numerous acid-fast bacilli in Ziehl Neelsen-stained smears from the ulcers. Feline leprosy was suspected following preliminary polymerase chain reaction results: positive for Mycobacterium genus but negative for Mycobacterium tuberculosis and Mycobacterium avium complexes. Mycobacterium lepraemurium was later identified following DNA sequence analysis of the 5′ end of the 16S rRNA gene and the 16S–23S internal transcribed spacer region. Microscopic lesions consisted of pyogranulomas containing mainly large foamy macrophages with 10–100 intra-cellular acid-fast bacilli per field. The cat was cured after surgery and a 14-week course of clofazimine (30 mg daily) and clarithromycin (50 mg twice daily).


2004 ◽  
Vol 54 (1) ◽  
pp. 175-181 ◽  
Author(s):  
Costantino Vetriani ◽  
Mark D. Speck ◽  
Susan V. Ellor ◽  
Richard A. Lutz ◽  
Valentin Starovoytov

A thermophilic, anaerobic, chemolithoautotrophic bacterium was isolated from the walls of an active deep-sea hydrothermal vent chimney on the East Pacific Rise at 9° 50′ N. Cells of the organism were Gram-negative, motile rods that were about 1·0 μm in length and 0·6 μm in width. Growth occurred between 60 and 80 °C (optimum at 75 °C), 0·5 and 4·5 % (w/v) NaCl (optimum at 2 %) and pH 5 and 7 (optimum at 5·5). Generation time under optimal conditions was 1·57 h. Growth occurred under chemolithoautotrophic conditions in the presence of H2 and CO2, with nitrate or sulfur as the electron acceptor and with concomitant formation of ammonium or hydrogen sulfide, respectively. Thiosulfate, sulfite and oxygen were not used as electron acceptors. Acetate, formate, lactate and yeast extract inhibited growth. No chemoorganoheterotrophic growth was observed on peptone, tryptone or Casamino acids. The genomic DNA G+C content was 54·6 mol%. Phylogenetic analyses of the 16S rRNA gene sequence indicated that the organism was a member of the domain Bacteria and formed a deep branch within the phylum Aquificae, with Thermovibrio ruber as its closest relative (94·4 % sequence similarity). On the basis of phylogenetic, physiological and genetic considerations, it is proposed that the organism represents a novel species within the newly described genus Thermovibrio. The type strain is Thermovibrio ammonificans HB-1T (=DSM 15698T=JCM 12110T).


2006 ◽  
Vol 188 (9) ◽  
pp. 3345-3356 ◽  
Author(s):  
Craig Everroad ◽  
Christophe Six ◽  
Frédéric Partensky ◽  
Jean-Claude Thomas ◽  
Julia Holtzendorff ◽  
...  

ABSTRACT Chromatic adaptation (CA) in cyanobacteria has provided a model system for the study of the environmental control of photophysiology for several decades. All forms of CA that have been examined so far (types II and III) involve changes in the relative contents of phycoerythrin (PE) and/or phycocyanin when cells are shifted from red to green light and vice versa. However, the chromophore compositions of these polypeptides are not altered. Some marine Synechococcus species strains, which possess two PE forms (PEI and PEII), carry out another type of CA (type IV), occurring during shifts from blue to green or white light. Two chromatically adapting strains of marine Synechococcus recently isolated from the Gulf of Mexico were utilized to elucidate the mechanism of type IV CA. During this process, no change in the relative contents of PEI and PEII was observed. Instead, the ratio of the two chromophores bound to PEII, phycourobilin and phycoerythrobilin, is high under blue light and low under white light. Mass spectroscopy analyses of isolated PEII α- and β-subunits show that there is a single PEII protein type under all light climates. The CA process seems to specifically affect the chromophorylation of the PEII (and possibly PEI) α chain. We propose a likely process for type IV CA, which involves the enzymatic activity of one or several phycobilin lyases and/or lyase-isomerases differentially controlled by the ambient light quality. Phylogenetic analyses based on the 16S rRNA gene confirm that type IV CA is not limited to a single clade of marine Synechococcus.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Christabel Ndahebwa Muhonja ◽  
Gabriel Magoma ◽  
Mabel Imbuga ◽  
Huxley Mae Makonde

This study aimed at molecular and biochemical characterization of low-density polyethene (LDPE) degrading fungi and bacteria from Dandora dumpsite, Nairobi. Twenty bacterial and 10 fungal isolates were identified using 16S rDNA and 18S rDNA sequences for bacteria and fungi, respectively. The highest fungal degradation was attributed to Aspergillus oryzae strain A5,1 while the highest bacterial degradation was attributed to Bacillus cereus strain A5,a and Brevibacillus borstelensis strain B2,2, respectively. Isolates were screened for their ability to produce extracellular laccase and esterase; Aspergillus fumigatus strain B2,2 exhibited the highest presence of laccase (15.67 mm) while Aspergillus oryzae strain A5,1 exhibited the highest presence of esterase (14.33 mm). Alkane hydroxylase-encoding genes were screened for using primer AlkB 1 which amplified the fragment of size 870 bp. Four bacterial samples were positive for the gene. Optimum growth temperature of the fungal isolates was 30°C. The possession of laccase, esterase, and alkane hydroxylase activities is suggested as key molecular basis for LDPE degrading capacity. Knowledge of optimum growth conditions will serve to better utilize microbes in the bioremediation of LDPE. The application of Aspergillus oryzae strain A5,1 and Bacillus cereus strain A5,a in polyethene degradation is a promising option in this kind of bioremediation as they exhibited significantly high levels of biodegradation. Further investigation of more alkane degrading genes in biodegrading microbes will inform the choice of the right microbial consortia for bioaugmentation strategies.


Phytotaxa ◽  
2020 ◽  
Vol 442 (2) ◽  
pp. 61-79 ◽  
Author(s):  
DENIS DAVYDOV ◽  
SERGEI SHALYGIN ◽  
ANNA VILNET

A cyanobacterial strain isolated from the Svalbard archipelago was studied using morphological, ecological, and molecular approaches. The morphology of natural populations fit well the description of the Leptolyngbya s.l. however, in culture, they formed specific nodules that prevented affiliation to this genus. Further phylogenetic analyses including the 16S rRNA gene and 16S-23S ITS region revealed that the strain corresponds to the genus Nodosilinea. Based on this total evidence approach, we provide here a description of the new taxon Nodosilinea svalbardensis sp. nov.


2007 ◽  
Vol 57 (5) ◽  
pp. 959-963 ◽  
Author(s):  
Jaewoo Yoon ◽  
Mina Yasumoto-Hirose ◽  
Atsuko Katsuta ◽  
Hiroshi Sekiguchi ◽  
Satoru Matsuda ◽  
...  

An obligately aerobic, Gram-negative, non-spore-forming, non-motile, spherical bacterium, designated strain 04OKA010-24T, was isolated from seawater surrounding the hard coral Galaxea fascicularis L., collected at Majanohama, Akajima, Japan, and was subjected to a polyphasic taxonomic study. Phylogenetic analyses based on the 16S rRNA gene sequence indicated that the new strain represented a member of the phylum ‘Verrucomicrobia’ and shared 84–95 % sequence similarity with cultivated strains of ‘Verrucomicrobia’ subdivision 4. Amino acid analysis of the cell-wall hydrolysate indicated the absence of muramic acid and diaminopimelic acid, which suggested that the strain did not contain peptidoglycan in the cell wall. The G+C content of the DNA was 53.9 mol%. MK-7 was the major menaquinone and C14 : 0, C18 : 1 ω9c and C18 : 0 were the major fatty acids. On the basis of these data, it was concluded that strain 04OKA010-24T represents a novel species in a new genus in subdivision 4 of the phylum ‘Verrucomicrobia’, for which the name Coraliomargarita akajimensis gen. nov., sp. nov. is proposed. The type strain of Coraliomargarita akajimensis is 04OKA010-24T (=MBIC06463T=IAM 15411T=KCTC 12865T).


2006 ◽  
Vol 56 (12) ◽  
pp. 2831-2836 ◽  
Author(s):  
Marie Bank Nielsen ◽  
Kasper Urup Kjeldsen ◽  
Kjeld Ingvorsen

A novel alkalitolerant, anaerobic bacterium, designated strain sk.kt5T, was isolated from a metal coupon retrieved from a corrosion-monitoring reactor of a Danish district heating plant (Skanderborg, Jutland). The cells of strain sk.kt5T were motile, rod-shaped (0.4–0.6×2.5–9.6 μm), stained Gram-positive and formed endospores. Strain sk.kt5T grew at pH 7.6–10.5 (with optimum growth at pH 8.0–9.5), at temperatures in the range 23–44 °C (with optimum growth at 35–37 °C), at NaCl concentrations in the range 0–5 % (w/v) (with optimum growth at 0–0.5 %) and required yeast extract for growth. Only a limited number of substrates were utilized as electron donors, including betaine, formate, lactate, methanol, choline and pyruvate. Elemental sulfur, sulfite, thiosulfate, nitrate and nitrite, but not sulfate or Fe(III) citrate, were used as electron acceptors. The G+C content of the DNA was 41.6 mol%. Phylogenetic analyses of the sequence data for the dsrAB genes [encoding the major subunits of dissimilatory (bi)sulfite reductase] and the 16S rRNA gene placed strain sk.kt5T within a novel lineage in the class Clostridia of the phylum Firmicutes. Taken together, the physiological and genotypic data suggest that strain sk.kt5T represents a novel species within a novel genus, for which the name Desulfitibacter alkalitolerans gen. nov., sp. nov. is proposed. The type strain of Desulfitibacter alkalitolerans is sk.kt5T (=JCM 12761T=DSM 16504T).


2010 ◽  
Vol 60 (11) ◽  
pp. 2629-2633 ◽  
Author(s):  
Tomohiko Tamura ◽  
Yuumi Ishida ◽  
Misa Otoguro ◽  
Ken-ichiro Suzuki

Three short spore chain-forming actinomycete strains were isolated from soil samples collected from subtropical islands in Japan. The cell-wall peptidoglycan of these strains contained meso-diaminopimelic acid (meso-A2pm), glutamic acid and alanine. The major isoprenoid quinone was MK-9(H4), iso-C16 : 0 and 2-OH iso-C16 : 0 were the major cellular fatty acids and phosphatidylethanolamine was a component of the polar lipids. The G+C content of the genomic DNA was 67–69 mol%. Phylogenetic analyses based on the 16S rRNA gene sequences showed that the novel strains consistently formed a monophyletic cluster with Amycolatopsis taiwanensis. On the basis this polyphasic taxonomical study, it is proposed that the two new isolates represent two novel species: Amycolatopsis helveola (type strain TT00-43T=NBRC 103394T=KCTC 19329T) and Amycolatopsis pigmentata (type strain TT99-32T=NBRC 103392T=KCTC 19330T).


Sign in / Sign up

Export Citation Format

Share Document