scholarly journals Repairs of Damaged Castings Made of Graphitic Cast Iron by Means of Brazing

2017 ◽  
Vol 17 (3) ◽  
pp. 91-96 ◽  
Author(s):  
M. Mičian ◽  
R. Koňár

AbstractThe article summarizes the theoretical knowledge from the field of brazing of graphitic cast iron, especially by means of conventional flame brazing using a filler metal based on CuZn (CuZn40SnSi – brass alloy). The experimental part of the thesis presents the results of performance assessment of brazed joints on other than CuZn basis using silicone (CuSi3Mn1) or aluminium bronze (CuAl10Fe). TIG electrical arc was used as a source of heat to melt these filler materials. The results show satisfactory brazed joints with a CuAl10Fe filler metal, while pre-heating is not necessary, which favours this method greatly while repairing sizeable castings. The technological procedure recommends the use of AC current with an increased frequency and a modified balance between positive and negative electric arc polarity to focus the heat on a filler metal without melting the base material. The suitability of the joint is evaluated on the basis of visual inspection, mechanic and metallographic testing.

2014 ◽  
Vol 794-796 ◽  
pp. 339-344 ◽  
Author(s):  
Ulf Roar Aakenes ◽  
Øystein Grong ◽  
Tor Austigard

In the present investigation the new HYB spindle extruder has been used for butt joining of 4 mm thick aluminium plates of the AA6082-T6 type at RT in one pass, employing a 1.6 mm diameter filler wire of matching composition. The test joint produced was subsequently sectioned and subjected to thorough examination in the laboratory, which included visual inspection of the surface quality and bead penetration depth, optical microscopy for visualisation and documentation of the material flow pattern and the microstructure within the joining zone and Vickers hardness testing. It is concluded that strict control of the bead penetration depth is necessary in order to obtain full bond strength. This is because the bead penetration determines the contact pressure between the filler metal and the base metal in the groove during filling.


2020 ◽  
Vol 56 (2) ◽  
pp. 209-220
Author(s):  
J. Górka

The article presents the analysis of the structure and properties of joints made of abrasion-resistant plates having the structure of chromium cast iron and welded with filler metals, the use of which aimed to provide the high abrasion resistance of the surface layer and good mechanical properties of the base material. The face layer of the joint was made using the MMA (Manual Metal Arc) welding method and the Fe-Cr-Nb-B type nanocrystalline filler metal. The root weld was welded using an austenitic filler metal, whereas the filling layer was welded using the MAG method with a low-alloy filler metal. The joints were subjected to non-destructive tests (visual tests and penetrant tests) as well as to mechanical properties tests. The research involved macro and microscopic metallographic tests, the determination of the grain size using an Xpert PRO X-ray diffractometer, and the EDS analysis of the chemical composition of the precipitates. The assessment of the operational properties of the joints based on hardness measurements, static tensile tests, bend tests as well as identifying the metal-mineral abrasive wear resistance were performed in accordance with ASTM G65 ? 04 standards. The results of the abrasion resistance tests were referred to the HARDOX 400 steel reference specimen. Considering the tests results it was concluded that the used filler materials can assure the appropriate operational properties of welded abrasion-resistant plates.


Author(s):  
Philipp Andreazza ◽  
Andreas Gericke ◽  
Knuth-Michael Henkel

AbstractArc brazing with low-melting copper-based filler materials, which has long been established and standardized in the thin sheet sector, offers numerous advantages in the processing of predominantly electrolytically galvanized steel structures. In steel and shipbuilding, on the other hand, equipment parts made of thick steel sheets are hot-dip galvanized at low cost and with good corrosion-inhibiting properties. Quality welding of such constructions is not possible without special precautions such as removing the zinc layer and subsequent recoating. With regard to greater plate thicknesses, arc brazing was analyzed in these investigations as an alternative joining method with regard to its suitability for practical use. Within the scope of the investigations, CuSi3Mn, CuMn12Ni2, and four different aluminum bronzes were examined on different sheet surface conditions with regard to the geometrical and production parameters. This was carried out by build-up and connection brazing, executed as butt and cross joints. Quasi-static tensile tests and fatigue tests were used to assess the strength behavior. In addition, metallographic analyses are carried out as well as hardness tests. The suitability for multi-layer brazing and the tendency to distortion were also investigated, as well as the behavior of arc brazed joints under corrosive conditions.


Author(s):  
W. Miglietti

Diffusion brazing is a joining process utilized in the manufacture and repair of turbine blades and vanes. MAR-M247 is an investment cast Ni-based superalloy used for turbine blading and has good strength properties at high temperatures. The objectives of this work was to develop a diffusion brazing procedure to achieve high strength joints. A commercially available diffusion brazing filler metal of composition Ni-15Cr-3,5B of 100 μm thickness was used. With the desire to eliminate brittle centre-line phases, the effects of the processing variables (only temperature and time) on the joint microstructure was studied. Once the metallurgy of the joint was understood, mechanical property assessments were undertaken i.e. tensile and creep rupture tests, and the latter being the severest test to evaluate joint strength. The results demonstrated that the diffusion brazed joints had nearly equivalent mechanical strength to that of the parent metal. This showed that the resultant diffusion brazing parameters enabled effective and reliable joining of MAR-M247.


2019 ◽  
Vol 16 (31) ◽  
pp. 642-650
Author(s):  
Douglas MARTINAZZI ◽  
Guilherme V. B LEMOS ◽  
Renan M LANDELL ◽  
Diogo T BUZZATTI ◽  
André BRUSIUS ◽  
...  

Nodular cast irons are an excellent alternative in manufacturing process of axels due to their characteristics and good mechanical properties. However, the necessity of joining the axels to the gears and other components, made in carbon steel, is a great challenge. Traditional fusion welding methods applied to dissimilar ferrous materials are not deeply studied. In this context, it is well known that different materials have distinct melting points which can cause difficulty in welding, besides of defects formation from solidification. Therefore, modern joining processes such as Friction Hydro Pillar Processing (FHPP) are a great alternative. In this technology, a consumable rod is rotated against to a base material, generating the heat due to the friction, promoting materials in the plastic state and then producing the weld. Hence, this work presents a preliminary study of FHPP between the FE55006 nodular cast iron and SAE 8620 steel and evaluates the rod geometry influence on microstructure and surface stresses of the welded joints. Two rod geometries were used and two welds were further produced. The results indicated that an increase in the rod contact area promoted a lower surface stress as well as a better welded joint.


Metals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 526
Author(s):  
Yuzhen Lei ◽  
Hong Bian ◽  
Wei Fu ◽  
Xiaoguo Song ◽  
Jicai Feng ◽  
...  

Titanium and zirconia (ZrO2) ceramics are widely used in biomedical fields. This study aims to achieve reliable brazed joints of titanium/ZrO2 using biocompatible Au filler for implantable medical products. The effects of brazing temperature and holding time on the interfacial microstructures and mechanical properties of titanium/Au/ZrO2 joints were fully investigated by scanning electron microscopy (SEM), energy-dispersive spectrometry (EDS) and X-ray diffraction (XRD). The results indicated that the typical interfacial microstructure of the titanium/Au/ZrO2 joint was titanium/Ti3Au layer/TiAu layer/TiAu2 layer/TiAu4 layer/TiO layer/ZrO2 ceramic. With an increasing brazing temperature or holding time, the thickness of the Ti3Au + TiAu + TiAu2 layer increased gradually. The growth of the TiO layer was observed, which promoted metallurgical bonding between the filler metal and ZrO2 ceramic. The optimal shear strength of ~35.0 MPa was obtained at 1150 °C for 10 min. SEM characterization revealed that cracks initiated and propagated along the interface of TiAu2 and TiAu4 reaction layers.


Metals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1470
Author(s):  
Dechao Qiu ◽  
Zeng Gao ◽  
Xianli Ba ◽  
Zhenjiang Wang ◽  
Jitai Niu

The joining methods of Aluminum matrix composites reinforced with SiC particles (SiCp/Al MMCs) are a challenge during the manufacturing process due to the significant differences between SiC particles and base aluminum in terms of both physical and chemical properties. Micro-nano brazing filler metal Al-17.0Cu-8.0Mg fabricated by melt-spinning technology was employed to deal with the joining problem of 55 vol.% SiCp/ZL102 composites in this work. The result indicated that the foil-like brazing filler metal contained uniformed cellular nano grains, with a size less than 200 nm. The solidus and liquidus temperatures of the foil-like brazing filler metal decreased by 4 °C and 7 °C in comparison with the values of the as-cast brazing filler metal due to the nanometer size effect. The maximum joint shear strength of 98.17 MPa achieved with a brazing temperature of 580 °C and holding time of 30 min was applied in vacuum brazing process. The width of the brazing seam became narrower and narrower with increasing brazing temperature owning to the strong interaction between the micro-nano brazing filler metal and 55 vol.% SiCp/ZL102 composites. The fracture morphology of the joint made at a brazing temperature of 580 °C was characterized by quasi-cleavage fracture. After brazing, the chemical concentration gradient between the brazing filler metal and base material disappeared.


2013 ◽  
Vol 58 (4) ◽  
pp. 1007-1011 ◽  
Author(s):  
A. Winiowski ◽  
M. Rózanski

Abstract The research involved vacuum tests of brazing properties of silver filler metals, containing tin as well as tin and nickel, and used in brazing of chromium X6Cr17 and chromium-nickel X6CrNiTi18-10 stainless steels. The research also involved testing the strength and structural properties of brazed joints made of these steels. The tests were conducted on filler metals (silver brazing alloys) B-Ag68CuSn-730/755 (Ag68Cu28Sn4) and B-Ag65CuSnNi-740/767 (Ag65Cu28Sn5Ni2) and also, for comparative purposes, on the filler metal B-Ag72Cu-780 (Ag 272 according to PN-EN ISO 17672), most commonly applied in the vacuum brazing of high alloyed stainless steels. The brazing properties of the filler metals were tested by determining their wettability by means of the spreadability method. The strength of brazed joints made of the stainless steels was examined in a shear test. Research-related structural tests involved light and electron microscopy with an energy dispersive spectrometer (EDS). The comparative analysis of the properties of the filler metals revealed the positive impact of tin and nickel on the spreadability and wettability of the silver brazing alloys as well as on the quality and the shear strength of brazed joints.


Sign in / Sign up

Export Citation Format

Share Document