scholarly journals Characteristic of Oxide Layers Obtained on Titanium in the Process of Thermal Oxidation

2016 ◽  
Vol 61 (2) ◽  
pp. 853-856 ◽  
Author(s):  
K. Aniołek ◽  
M. Kupka ◽  
A. Barylski ◽  
Ł. Mieszczak

Abstract Thermal oxidation in air may be one method to improve the properties of titanium and its alloys through its influence on the structure and properties of the material’s surface layer. This paper presents a description of oxide layers obtained on the surface of Grade 2 titanium as a result of oxidation at temperatures of 600 and 700°C. On the basis of kinetic curves, it was found that the intensity of oxide layer growth increased with oxidation temperature. Studies of the surface morphology of oxide layers showed that the size of the formed oxide particles was greater following oxidation at 600°C. The obtained layers were subjected to X-ray phase analysis and microhardness measurements. Irrespective of oxidation temperature, the scale consisted of TiO2 oxide in the crystallographic form of rutile and of Ti3O oxide. The hardness of oxide layers amounted to around 1265 HV and was more than 4 times higher compared to the material in i ts initial state.

2013 ◽  
Vol 20 (05) ◽  
pp. 1350046 ◽  
Author(s):  
EVAN T. SALIM

In this work, we studied the effect of rapid thermal oxidation process on the structural and surface morphology of silicon nanocrystal-based heterostructures. PLD technique was employed in combination with rapid thermal oxidation process to form multilayers heterostructures. Results show the dependence of the surface roughness and structure on the oxidation temperature. Best surface morphology was achieved at 723 K oxidation temperature, at which, the X-ray diffraction result ensured the formation of the Cu 2 O phase at (111) and (002) diffraction plain with uniform porous surface.


2020 ◽  
Vol 989 ◽  
pp. 787-792
Author(s):  
Erkezhan Erkinbekkyzy Tabieva ◽  
Laila Gylymmeddenovna Zhurerova ◽  
Daryn Baizhan

This work is devoted to the study of the influence of technological parameters of electrolytic-plasma surface quenching (EPQ) on the structure and surface properties of samples of bandage steel 2. In the electrolytic-plasma treatment, we performed the cathode mode in an electrolyte containing an aqueous solution of 20% carbamide (NH2)2CO and 20% sodium carbonate Na2CO3, on the installation of EPO with appropriate technological processing conditions. According to the electron-optical, X-ray phase studies, the phase composition of the steel after the EPQ was determined. This differs from the initial one by the formation of cementite and iron oxides on the surface of the samples. It is established that the microhardness of the bandage steel 2 after the EPQ during heating for 4 seconds increases 2.4 times, in comparison with the initial state.


Tribologia ◽  
2017 ◽  
pp. 5-9 ◽  
Author(s):  
Krzysztof ANIOŁEK ◽  
Adrian BARYLSKI ◽  
Marian KUPKA ◽  
Michał DWORAK

The paper presents the results of tests concerning the tribological properties of titanium Grade 2 subjected to thermal oxidation at a temperature of 600°C and 700°C for 72 hours. Morphology of the obtained oxide scale was determined using a scanning electron microscope. After oxidation at 600°C, the resultant oxides concentrated mostly on the roughness elevations formed during the grinding of samples. On raising temperature to 700°C, finer and more agglomerated oxide particles were formed. Tribological tests have shown that titanium Grade 2 in a non-oxidised condition is characterised by very poor resistance to sliding wear. It has been found that the presence of an oxide layer on the surface of titanium significantly improves its poor tribological properties. Oxide layers obtained at temperatures of 600°C and 700°C allowed obtaining as much as a triple reduction of volumetric wear. Analysis of the morphology of the wear trace surface has shown the presence of corrugation wear on a non-oxidised specimen in the form of two alternate regions with different morphologies. It has been demonstrated that oxide layers obtained during thermal oxidation eliminate the phenomenon of corrugation wear.


2010 ◽  
Vol 660-661 ◽  
pp. 1087-1092 ◽  
Author(s):  
Danieli A.P. Reis ◽  
João Paulo Barros Machado ◽  
G.V. Martins ◽  
Carlos de Moura Neto ◽  
M.J.R. Barboza ◽  
...  

The present study is about the effect of oxide layers in creep of Ti-6Al-4V alloy, in different atmospheres (air, nitrogen and argon). Ti-6Al-4V alloy was treated during 24 hours in a thermal treatment furnace at 600°C in different atmospheres (argon, nitrogen and air). The samples were analyzed by High Resolution X-Ray Diffraction, Scanning Electronic Microscopy (SEM), Atomic Force Microscopy (AFM) and microhardness test. The polished samples of Ti-6Al-4V allloy were treated during 24 hours at 600°C and the oxidation behavior in each case using argon, nitrogen and air atmospheres was observed. The oxidation was more aggressive in air atmosphere, forming TiO2 film in the surface. The oxidation produced a weight gain through the oxide layer growth and hardening by oxygen dissolution. Ti-6Al-4V alloy specimens also were produced in order to test them in creep, at 250 MPa and 600°C, with argon, nitrogen and air atmospheres. When the Ti-6Al-4V alloy was tested under argon and nitrogen atmospheres oxidation effects are smaller and the behavior of the creep curves shows that the creep life time was better in atmospheres not so oxidant. It is observed a decreasing of steady state creep in function of the oxidation process reduction. It is shown that, for the Ti-6Al-4V alloy, their useful life is strongly affected by the atmosphere that is submitted, on account of the oxidation suffered by the material.


2005 ◽  
Vol 19 (01n03) ◽  
pp. 631-633
Author(s):  
Y. MA ◽  
C. Y. KONG ◽  
X. H. YANG ◽  
J. XU

Nanocrystalline ZnO films were prepared by thermally oxidizing the Zn films deposited on mirror-polished quartz substrates by thermal evaporation of Zn granule. The structure of the films was studied by X-ray diffraction (XRD). The results showed that highly preferred (002) orientation of the ZnO films has been achieved. The oxidation temperature has an important effect on preferred orientation of ZnO films.


2020 ◽  
Vol 839 ◽  
pp. 57-62
Author(s):  
Erkezhan Erkinbekkyzy Tabieva ◽  
Laila Gylymmeddenovna Zhurerova ◽  
Daryn Baizhan

This work is devoted to the study of the influence of technological parameters of electrolytic-plasma surface quenching (EPQ) on the structure and surface properties of samples of bandage steel 2. In the electrolytic-plasma treatment, we performed the cathode mode in an electrolyte containing an aqueous solution of 20% carbamide (NH2)2CO and 20% sodium carbonate Na2CO3, on the installation of EPO with appropriate technological processing conditions. According to the electron-optical, X-ray phase studies, the phase composition of the steel after the EPQ was determined this differs from the initial one by the formation of cementite and iron oxides on the surface of the samples. It is established that the microhardness of the bandage steel 2 after the EPQ during heating for 4 seconds increases 2.4 times in comparison with the initial state.


Author(s):  
Victor F. Kostryukov ◽  
Irina Y. Mittova ◽  
Boris V. Sladkopevtsev ◽  
Anna S. Parshina ◽  
Dar’ya S. Balasheva

Исследованием термооксидирования фосфида индия под воздействием фосфата висмута, вводимого через газовую фазу, установлено ускоряющее воздействие фосфата висмута на процесс формирования пленок. Величина ускорения составляет от 1.5 до 2 раз, и максимальный прирост пленки достигается в первые 10 мин оксидирования. Определяющим процессом является образование фосфата индия за счет вторичного взаимодействия оксидных форм компонентов подложки, лимитируемое диффузией оксидов в твердой фазе. Методами инфракрасной спектроскопии, локального рентгеноспектрального микроанализа и рентгенофазового анализа установлен состав пленок на поверхности InP, основными компонентами которого являются различные фосфаты индия     REFERENCES Wager J. F., Wilmsen C. W. Thermal oxidation of InP. Appl. Phys., 1980, v. 51(1), pp. 812–814. https://doi.org/10.1063/1.327302 Yamaguchi M., Ando K. Thermal oxidation of InP and properties of oxide fi lm. Appl. Phys., 1980, v. 5(9), pp. 5007–5012. https://doi.org/10.1063/1.3283803. Mittova I. Ya., Borzakova G. V., Terekhov V. A., Mittov O. N, Pshestanchik V. R., Kashkarov V. M. Growth of own oxide layers on indium phosphide. Izvestija AN SSSR. Serija Neorganicheskie Materialy [News of the Academy of Sciences of the USSR. Series Inorganic Materials], 1991, v. 27(10), pp. 2047–2051. (in Russ.) Mittova I. Ya., Borzakova G. V., Terekhov V. A., Mittov O. N, Pshestanchik V. R., Kashkarov V. M. Growth of own oxide layers on indium phosphide. Izvestija AN SSSR. Serija Neorganicheskie Materialy [News of the Academy of Sciences of the USSR. Series Inorganic Materials], 1991, v. 27(10), pp. 2047–2051. (in Russ.) Minaychev V. Ye. Naneseniye plonok v vakuume. [Film deposition in vacuum]. Moscow, Vyssh. Shkola Publ., 1989, 130 p. (in Russ.) Nikitin M. M. Tekhnologiya i oborudovaniye vakuumnogo napyleniya [Technology and equipment for vacuum deposition]. Moscow, Metallurgiya Publ., 1992, 112 p. (in Russ.) Veselov A. A., Veselov A. G., Vysotsky S. L., Dzhumaliyev A. S., Filimonov Yu. A. Magnetic properties of thermally deposited Fe/GaAs (100) thin fi lms. J Technical Physics, 2002, v. 47(8), pp. 1067–1070. https://doi.org/10.1134/1.1501694 Danilin B. S. Magnetronnyye raspylitel’nyye sistemy [Magnetron Spray Systems]. Moscow, Radio i svyaz’ Publ., 1982, 72 p. Pulver D., Wilmsen C.W. Thermal oxides of In0.5Ga0.5P and In0.5Al0.5P. Vac. Sci. Technol. B., 2001, v. 19(1), pp. 207–214. https://doi.org/10.1116/1.1342008 Punkkinen M. P. J., Laukkanen P., Lеng J., Kuzmin M., Tuominen M., Tuominen V., Dahl J., Pessa M., Guina M., Kokko K., Sadowski J., Johansson B., Väyrynen I. J., Vitos L. Oxidized In-containing III–V(100) surfaces: Formation of crystalline oxide fi lms and semiconductor-oxide interfaces. Physical review, 2011, v. 83(19), pp. 195–329. https://doi.org/10.1103/Phys-RevB.83.195329 Sladkopevtsev B. V., Tomina E. V., Mittova I. Ya., Dontsov A. I., Pelipenko D. I. On the thermal oxidation of VxOy–InP heterostructures formed by the centrifugation of vanadium (V) oxide gel. Journal of Surface Investigation. X-ray, Synchrotron and Neutron Techniques, 2016, v. 10(2), pp. 335–340. https://doi.org/10.1134/S102745101602018X Ningyi Y. Comparison of VO2 thin fi lms prepared by inorganic sol-gel and IBED methods. Appl. Phys. A., 2003, v. 78. pp. 777–780. https://doi.org/10.1007/s00339-002-2057-5 Herman M. A., Sitter H. Epitaxy: Fundamentals and Current Status. Heidelberg, Springer Science & Business Media, 2013, 382 p. Manijeh R. The MOCVD Challenge: A survey of GaInAsP–InP and GaInAsP–GaAs for photonic and electronic device applications. Boca Raton, CRC Press, 2010, 799 p. https://doi.org/10.1201/9781439807002 Mittova Ya. Multichannel reactions in chemostimulated oxidation of semiconductors – transit, conjugation, catalysis. Vestnik VGU. Serija: Himija, biologija [Bulletin of the VSU. Series: Chemistry, Biology], 2000, 2, pp. 5–12. (in Russ.) Mittova Ya. Infl uence of the physicochemical nature of chemical stimulators and the way they are introduced into a system on the mechanism of the thermal oxidation of GaAs and InP. Inorganic Materials, 2014, V. 50(9), pp. 874–881. https://doi.org/10.1134/S0020168514090088. Brauer G. A. Rukovodstvo po neorganicheskomu sintezu [Inorganic Synthesis Guide]. Moscow, Khimiya Publ., 1985, 360 с. (in Russ.) Nakamoto K. Infared and Raman Spectra of Inorganic and Coordination Compounds. New York, John Wiley & Sons Ltd, 1986, 335 p. Atlas IK-spektrov fosfatov [Atlas IR spectra of phosphates]. by R.YA. Mel’nikovoy. Moscow, Nauka Publ., 1985, 235 p. (in Russ.) Brandon D., Kaplan W. Microstructural Characterization of Materials. 2nd Edition, John Wiley & Sons Ltd, 2008, 536 p. https://doi.org/10.1002/9780470727133 International Center for Diffraction Data. 21. X-ray diffraction date cards, ASTM. X-ray diffraction date cards, ASTM. Kazenas B.K. Termodinamika ispareniya dvoynykh oksidov. [Thermodynamics of double oxide evaporation]. Мoscow, Nauka Publ., 2004, 551 p. (in Russ.)


2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
M. Cocca ◽  
L. D'Arienzo ◽  
L. D'Orazio

With the aim at controlling cellulose degradation phenomena, the natural aging of Whatman paper samples was simulated through different artificial aging processes: thermal oxidation in air at constant temperature, photo-oxidation under Xenon arc lamp, accelerating ageing in climatic chamber, and chemical oxidation with sodium methaperiodate. The cellulose degradation was studied by means of viscosimetric, Fourier transform infrared spectroscopy (FTIR), and wide angle X-ray scattering (WAXS) techniques together with thermogravimetric (TGA), mechanical, and optical analyses. All the treatments carried out were found to significantly modify paper structure and properties, the extent of the deterioration effects depending upon the aging kind. Direct correlations were, nevertheless, assessed among level of cellulose molecular degradation, formation of carboxyl, and/or carbonyl groups and paper strain at break.


2009 ◽  
Vol 1 (2) ◽  
pp. 18-20
Author(s):  
Dahyunir Dahlan

Copper oxide particles were electrodeposited onto indium tin oxide (ITO) coated glass substrates. Electrodeposition was carried out in the electrolyte containing cupric sulphate, boric acid and glucopone. Both continuous and pulse currents methods were used in the process with platinum electrode, saturated calomel electrode (SCE) and ITO electrode as the counter, reference and working electrode respectively. The deposited particles were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). It was found that, using continuous current deposition, the deposited particles were mixture of Cu2O and CuO particles. By adding glucopone in the electrolyte, particles with spherical shapes were produced. Electrodeposition by using pulse current, uniform cubical shaped Cu2O particles were produced


Sign in / Sign up

Export Citation Format

Share Document