Influence of Cluster Formation: Viscosity of Concentrated Emulsions

2003 ◽  
Vol 13 (5) ◽  
pp. 259-264 ◽  
Author(s):  
G. Kyazze ◽  
V. Starov

Abstract Recently a new theory of viscosity of concentrated emulsions dependency on volume fraction of droplets (Starov V, Zhdanov G: J. Colloid Interface Sci, 258, 404 (2003)) has been suggested that relates the viscosity of concentrated emulsions to formation of clusters. Through experiments with milk at different concentrations of fat, cluster formation has been validated using optical microscopy and their properties determined using the mentioned theory. Viscometric studies have shown that within the shear rate range studied, both the packing density of fat droplets inside clusters and the relative viscosity of milk (viscosity over skim milk viscosity) are independent of shear-rate, but vary with volume fraction. Comparison of the experimental data with previous theories that assumed that the particles remained discrete shows wide variation. We attribute the discrepancy to cluster formation.

2011 ◽  
Vol 306-307 ◽  
pp. 104-107
Author(s):  
Hong Chao Luo ◽  
Jun Mei Yang ◽  
Li Yuan Sun ◽  
Li Ping Ju

In the present work, the MCF model for semisolid metal slurries (SSMS) is applied to investigate the thixotropy of the Al-6.5wt%Si alloy under cyclic shear deformation. The study shows that the semisolid Al-6.5wt%Si alloy has the behavior of thixotropy. The area of the hysteresis loop increases with decreasing the up-time, the initial shear rate and increasing resting time, solid volume fraction and maximum shear rate, respectively. These results have qualitative agreement with the experimental data. The origin of the hysteresis loop is atrributed to the difference between the deagglomeration rate and the agglomeration rate.


2009 ◽  
Vol 73 (2) ◽  
pp. 167-191 ◽  
Author(s):  
N. Petford

AbstractMagmas undergoing shear are prime examples of flows that involve the transport of solids and gases by a separate (silicate melt) carrier phase. Such flows are called multiphase, and have attracted much attention due to their important range of engineering applications. Where the volume fraction of the dispersed phase (crystals) is large, the influence of particles on the fluid motion becomes significant and must be taken into account in any explanation of the bulk behaviour of the mixture. For congested magma deforming well in excess of the dilute limit (particle concentrations >40% by volume), sudden changes in the effective or relative viscosity can be expected. The picture is complicated further by the fact that the melt phase is temperature- and shear-rate-dependent. In the absence of a constitutive law for the flow of congested magma under an applied force, it is far from clear which of the many hundreds of empirical formulae devised to predict the rheology of suspensions as the particle fraction increases with time are best suited. Some of the more commonly used expressions in geology and engineering are reviewed with an aim to home in on those variables key to an improved understanding of magma rheology. These include a temperature, compositional and shear-rate dependency of viscosity of the melt phase with the shear-rate dependency of the crystal (particle) packing arrangement. Building on previous formulations, a new expression for the effective (relative) viscosity of magma is proposed that gives users the option to define a packing fraction range as a function of shear stress. Comparison is drawn between processes (segregation, clustering, jamming), common in industrial slurries, and structures seen preserved in igneous rocks. An equivalence is made such that congested magma, viewed in purely mechanical terms as a high-temperature slurry, is an inherently nonequilibrium material where flow at large Pe´clet numbers may result in shear thinning and spontaneous development of layering.


2012 ◽  
Vol 487 ◽  
pp. 487-490
Author(s):  
Hong Chao Luo ◽  
Ying Wu ◽  
Shi Pu Chen ◽  
En Sheng Xu

In the present work, the rheological model (CF model) developed by Chen and Fan[1] for semisolid metal slurries (SSMS) is applied to investigate the thixotropy of the AlSi6Mg2 alloy under cyclic shear deformation. The present investigation indicates that the semisolid AlSi6Mg2 alloy has the thixotropy by the technique of hysteresis loop. Specifically, the area of the hysteresis loop increases with decreasing the up-time, the initial shear rate and increasing resting time, solid volume fraction and maximum shear rate, respectively. These results agree qualitatively with the experimental data. Furthermore, the origin of the hysteresis loop is attributed to the difference between the agglomeration rate and the deagglomeration rate.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Benoit Tallon ◽  
Artem Kovalenko ◽  
Olivier Poncelet ◽  
Christophe Aristégui ◽  
Olivier Mondain-Monval ◽  
...  

AbstractNegative refraction of acoustic waves is demonstrated through underwater experiments conducted at ultrasonic frequencies on a 3D locally resonant acoustic metafluid made of soft porous silicone-rubber micro-beads suspended in a yield-stress fluid. By measuring the refracted angle of the acoustic beam transmitted through this metafluid shaped as a prism, we determine the acoustic index to water according to Snell’s law. These experimental data are then compared with an excellent agreement to calculations performed in the framework of Multiple Scattering Theory showing that the emergence of negative refraction depends on the volume fraction $$\Phi$$ Φ of the resonant micro-beads. For diluted metafluid ($$\Phi =3\%$$ Φ = 3 % ), only positive refraction occurs whereas negative refraction is demonstrated over a broad frequency band with concentrated metafluid ($$\Phi =17\%$$ Φ = 17 % ).


2021 ◽  
Author(s):  
Patrick Wilms ◽  
Jan Wieringa ◽  
Theo Blijdenstein ◽  
Kees van Malssen ◽  
Reinhard Kohlus

AbstractThe rheological characterization of concentrated suspensions is complicated by the heterogeneous nature of their flow. In this contribution, the shear viscosity and wall slip velocity are quantified for highly concentrated suspensions (solid volume fractions of 0.55–0.60, D4,3 ~ 5 µm). The shear viscosity was determined using a high-pressure capillary rheometer equipped with a 3D-printed die that has a grooved surface of the internal flow channel. The wall slip velocity was then calculated from the difference between the apparent shear rates through a rough and smooth die, at identical wall shear stress. The influence of liquid phase rheology on the wall slip velocity was investigated by using different thickeners, resulting in different degrees of shear rate dependency, i.e. the flow indices varied between 0.20 and 1.00. The wall slip velocity scaled with the flow index of the liquid phase at a solid volume fraction of 0.60 and showed increasingly large deviations with decreasing solid volume fraction. It is hypothesized that these deviations are related to shear-induced migration of solids and macromolecules due to the large shear stress and shear rate gradients.


Author(s):  
Pavan Prakash Duvvuri ◽  
Rajesh Kumar Shrivastava ◽  
Sheshadri Sreedhara

Stringent emission legislations and growing health concerns have contributed to the evolution of soot modeling in diesel engines from simple empirical relations to methods involving detailed kinetics and complex aerosol dynamics. In this paper, four different soot models have been evaluated for the high temperature, high pressure combusting dodecane spray cases of engine combustion network (ECN) spray A which mimics engine-relevant conditions. The soot models considered include an empirical, a multistep, a method of moments based, and a discrete sectional method soot model. Two experimental cases with ambient oxygen volume of 21% and 15% have been modeled. A good agreement between simulations and experiments for vapor penetration and heat release rate has been obtained. Quasi-steady soot volume fraction contours for the four soot models have been compared with experiments. Contours of the species and source terms involved in soot modeling have also been compared for a better understanding of soot processes. The empirical soot model results in higher magnitude and spread of soot due to a lack of modeling framework for oxidation through OH species. Among the four models studied, the multistep soot model has been observed to provide the most promising agreement with the experimental data in terms of distribution of soot and location of peak soot volume fraction. Due to a two-way coupling of soot models, the detailed models predict an upstream location for soot as compared to the multi-step soot model which is one way coupled. A significant difference (of an order of magnitude) in the concentration of PAH (polycyclic aromatic hydrocarbons) precursor between multistep and detailed soot models has been observed because of precursor consumption due to the coupling of detailed soot models with chemical kinetics. It is recommended that kinetic schemes, especially those concerning PAH, be validated with experimental data with a kinetics-coupled soot model.


e-Polymers ◽  
2011 ◽  
Vol 11 (1) ◽  
Author(s):  
Ming Duan ◽  
Shenwen Fang ◽  
Liehui Zhang ◽  
Fuxiao Wang ◽  
Peng Zhang ◽  
...  

AbstractAn experimental study of the flow-induced scission behaviour of four star hydrolyzed polyacrylamides (HPMA) with different arms during planar elongational flow in a cross-slot flow cell is described. The results showed that the shear stability of linear HPAM in distilled water was not essentially different from star HPAM. Polymer scission was not observed in either system in a shear rate range from 20,000 to 100,000s-1, which can be attributed to the strong polyelectrolyte behaviour of HPAM in distilled water. However, at the same shear rate, the star HPAMs exhibited superior shear stability in comparison to the linear HPAMs in aqueous solutions containing NaCl (CNaCl=0.2-1.0%wt) and, in particular, the initial reduction rate of relative viscosity (R) decreased with the degree of branching of the HPAMs. In addition, it was found that the R of five HPAMs in NaCl aqueous solutions exhibited an exponential dependence on shear rate, in which the coefficient C1 can be used to quantitatively evaluate shear stability. In star HPAM NaCl aqueous solutions, the increase of R with shear rate is very likely due to the decrease of the hydrodynamic radius (Rh) of these HPAMs, while the increase of R with NaCl concentrations can be attributed to the relatively low viscosity of these polymers at high NaCl concentrations.


Author(s):  
Mohammad Hemmat Esfe

In the present article, the effects of temperature and nanoparticles volume fraction on the viscosity of copper oxide-ethylene glycol nanofluid have been investigated experimentally. The experiments have been conducted in volume fractions of 0 to 1.5 % and temperatures from 27.5 to 50 °C. The shear stress computed by experimental values of viscosity and shear rate for volume fraction of 1% and in different temperatures show that this nanofluid has Newtonian behaviour. The experimental results reveal that in a given volume fraction when temperature increases, viscosity decreases, but relative viscosity varies. Also, in a specific temperature, nanofluid viscosity and relative viscosity increase when volume fraction increases. The maximum amount of increase in relative viscosity is 82.46% that occurs in volume fraction of 1.5% and temperature of 50 °C. Some models of computing nanofluid viscosity have been suggested. The greatest difference between the results obtained from these models and experimental results was down of 4 percent that shows that there is a very good agreement between experimental results and the results obtained from these models.


2001 ◽  
Vol 27 (2) ◽  
pp. 228-235
Author(s):  
Shinichi Ookawara ◽  
Akihisa Yano ◽  
Kohei Ogawa ◽  
Koichi Taniguchi

Author(s):  
Yueqiong Wu ◽  
Zhongyang Luo ◽  
Hong Yin ◽  
Tao Wang

Since the surfactant can form rod-like micelles or even cross-link structures, viscoelastic surfactant (VES) fluid has unique rheological characteristics. The demerits of VES fluids have been proven after being applied as the fracturing fluid for several years. However, the fluid has high fluid loss and a low viscosity at high temperature, which limits the application to hydraulic fracturing. This paper focuses on the VES fluid mixed with nanoparticles which should be an effective way to maintain the viscosity at high temperature and high shear rate. The experiments were based on preparation of uniform and stable nanocolloids, which utilize Microfluidizer high shear fluid processor. Dynamic light scattering and microscopic methods are employed to investigate the stability and micro-structure of the VES fluid. The effects of temperature, shear rate and volume fraction of the nanoparticles on rheology of VES were studied. The SiO2 nanoparticles could significantly improve the rheological performance of VES fluid, although the rheological performance at the temperature over 90 °C needs to be enhanced. The mechanisms of interactions between nanoparticles and micelles are also discussed later in the paper. At the end, the potential of VES fluid mixed with nanoparticles during application in fracturing process was discussed.


Sign in / Sign up

Export Citation Format

Share Document