Lipopolysaccharide: a tool and target in enterobacterial vaccine development

2008 ◽  
Vol 389 (5) ◽  
Author(s):  
Gábor Nagy ◽  
Tibor Pál

AbstractLipopolysaccharide (LPS) is an essential component of Gram-negative bacteria. While mutants exhibiting truncated LPS molecules are usually over-attenuated, alternative approaches that affect the extent or timing of LPS expression, as well as its modification may establish the optimal balance for a live vaccine strain of sufficient attenuation and retained immunogenicity. On the other hand, a specific immune response to LPS molecules in itself is capable of conferring protective immunity to certain enterobacterial pathogens. Therefore, purified LPS derivatives could be used as parenteral vaccines. This review summarizes various LPS-based vaccination strategies, as well as approaches that utilize LPS mutants as whole-cell vaccines.

2019 ◽  
Vol 10 ◽  
pp. 1864-1872
Author(s):  
Prof. Teodora P. Popova

The effect of ionized aqueous solutions (anolytes and catholyte) in the processing of fruits (cherries, morellos, and strawberries) for decontamination has been tested. Freshly prepared analytes and catholyte without the addition of salts were used, as well as stored for 7 months anolytes, prepared with 0.5% NaCl and a combination of 0.5% NaCl and 0.5% Na2CO3. The anolyte prepared with a combination of 0.5% NaCl and 0.5% Na2CO3, as well as the anolyte obtained with 0.5% NaCl, exhibit high antimicrobial activity against the surface microflora of strawberries, cherries, and sour cherries. They inactivate E. coli for 15 minutes. The other species of the fam. Enterobacteriaceae were also affected to the maximum extent, as is the total number of microorganisms, especially in cherries and sour cherries. Even stored for 7 months, they largely retain their antimicrobial properties. Anolyte and catholyte, obtained without the addition of salts, showed a lower effect on the total number of microorganisms, but had a significant effect on Gram-negative bacteria, and especially with regard to the sanitary indicative E. coli.


2006 ◽  
Vol 50 (6) ◽  
pp. 2261-2264 ◽  
Author(s):  
Hee-Soo Park ◽  
Hyun-Joo Kim ◽  
Min-Jung Seol ◽  
Dong-Rack Choi ◽  
Eung-Chil Choi ◽  
...  

ABSTRACT DW-224a showed the most potent in vitro activity among the quinolone compounds tested against clinical isolates of gram-positive bacteria. Against gram-negative bacteria, DW-224a was slightly less active than the other fluoroquinolones. The in vivo activities of DW-224a against gram-positive bacteria were more potent than those of other quinolones.


2020 ◽  
Vol 6 (23) ◽  
pp. eaaz6333 ◽  
Author(s):  
Mikhail Bogdanov ◽  
Kyrylo Pyrshev ◽  
Semen Yesylevskyy ◽  
Sergey Ryabichko ◽  
Vitalii Boiko ◽  
...  

The distribution of phospholipids across the inner membrane (IM) of Gram-negative bacteria is unknown. We demonstrate that the IMs of Escherichia coli and Yersinia pseudotuberculosis are asymmetric, with a 75%/25% (cytoplasmic/periplasmic leaflet) distribution of phosphatidylethanolamine (PE) in rod-shaped cells and an opposite distribution in E. coli filamentous cells. In initially filamentous PE-lacking E. coli cells, nascent PE appears first in the periplasmic leaflet. As the total PE content increases from nearly zero to 75%, cells progressively adopt a rod shape and PE appears in the cytoplasmic leaflet of the IM. The redistribution of PE influences the distribution of the other lipids between the leaflets. This correlates with the tendency of PE and cardiolipin to regulate antagonistically lipid order of the bilayer. The results suggest that PE asymmetry is metabolically controlled to balance temporally the net rates of synthesis and translocation, satisfy envelope growth capacity, and adjust bilayer chemical and physical properties.


2006 ◽  
Vol 26 (21) ◽  
pp. 7821-7831 ◽  
Author(s):  
François Leulier ◽  
Nouara Lhocine ◽  
Bruno Lemaitre ◽  
Pascal Meier

ABSTRACT The founding member of the inhibitor of apoptosis protein (IAP) family was originally identified as a cell death inhibitor. However, recent evidence suggests that IAPs are multifunctional signaling devices that influence diverse biological processes. To investigate the in vivo function of Drosophila melanogaster IAP2, we have generated diap2 null alleles. diap2 mutant animals develop normally and are fully viable, suggesting that diap2 is dispensable for proper development. However, these animals were acutely sensitive to infection by gram-negative bacteria. In Drosophila, infection by gram-negative bacteria triggers the innate immune response by activating the immune deficiency (imd) signaling cascade, a NF-κB-dependent pathway that shares striking similarities with the pathway of mammalian tumor necrosis factor receptor 1 (TNFR1). diap2 mutant flies failed to activate NF-κB-mediated expression of antibacterial peptide genes and, consequently, rapidly succumbed to bacterial infection. Our genetic epistasis analysis places diap2 downstream of or in parallel to imd, Dredd, Tak1, and Relish. Therefore, DIAP2 functions in the host immune response to gram-negative bacteria. In contrast, we find that the Drosophila TNFR-associated factor (Traf) family member Traf2 is dispensable in resistance to gram-negative bacterial infection. Taken together, our genetic data identify DIAP2 as an essential component of the Imd signaling cascade, protecting the organism from infiltrating microbes.


Nature ◽  
2002 ◽  
Vol 416 (6881) ◽  
pp. 640-644 ◽  
Author(s):  
Marie Gottar ◽  
Vanessa Gobert ◽  
Tatiana Michel ◽  
Marcia Belvin ◽  
Geoffrey Duyk ◽  
...  

2005 ◽  
Vol 73 (5) ◽  
pp. 2644-2654 ◽  
Author(s):  
Terry H. Wu ◽  
Julie A. Hutt ◽  
Kristin A. Garrison ◽  
Lyudmila S. Berliba ◽  
Yan Zhou ◽  
...  

ABSTRACT The inhalation of Francisella tularensis biovar A causes pneumonic tularemia associated with high morbidity and mortality rates in humans. Exposure to F. tularensis usually occurs by accident, but there is increasing awareness that F. tularensis may be deliberately released in an act of bioterrorism or war. The development of a vaccine against pneumonic tularemia has been limited by a lack of information regarding the mechanisms required to protect against this disease. Vaccine models for F. tularensis in inbred mice would facilitate investigations of the protective mechanisms and significantly enhance vaccine development. Intranasal vaccination with the attenuated live vaccine strain (LVS) of F. tularensis reproducibly protected BALB/c mice, but not C57BL/6 mice, against intranasal and subcutaneous challenges with a virulent clinical isolate of F. tularensis biovar A (NMFTA1). The resistance of LVS-vaccinated BALB/c mice to intranasal NMFTA1 challenge was increased 100-fold by boosting with live NMFTA1 but not with LVS. The protective response was specific for F. tularensis and required both CD4 and CD8 T cells. The vaccinated mice appeared outwardly healthy for more than 2 months after NMFTA1 challenge, even though NMFTA1 was recovered from more than half of the vaccinated mice. These results show that intranasal vaccination induces immunity that protects BALB/c mice from intranasal infection by F. tularensis biovar A.


Sign in / Sign up

Export Citation Format

Share Document