scholarly journals The Anti-biofilm Activity of Nanometric Zinc doped Bioactive Glass against Putative Periodontal Pathogens: An in vitro Study

2018 ◽  
Vol 4 (1) ◽  
pp. 95-107
Author(s):  
Nasrin Esfahanizadeh ◽  
Mohammad Reza Nourani ◽  
Abbas Bahador ◽  
Nasrin Akhondi ◽  
Mostafa Montazeri

Abstract Colonization of periodontal pathogens on the surgical sites is one of the primary reasons for the failure of regenerative periodontal therapies. Bioactive glasses (BGs) owing to their favorable structural and antimicrobial properties have been proposed as promising materials for the reconstruction of periodontal and peri-implant bone defects. This study aimed to investigate the antibiofilm activity of zinc-doped BG (Zn/BG) compared with 45S5 Bioglass® (BG®) on putative periodontal pathogens. In this in vitro experimental study, the nano BG doped with 5-mol% zinc and BG® were synthesized by sol-gel method. Mono-species biofilms of Aggregatibacter actinomycetemcomitans (A. a), Porphyromonas gingivalis (P. g), and Prevotella intermedia (P. i)were prepared separately in a well-containing microplate. After 48 hours of exposure to generated materials at 37°C, the anti-biofilm potential of the samples was studied by measuring the optical density (OD) at 570nm wavelengths with a microplate reader. Two-way ANOVA then analyzed the results. Both Zn/BG and BG® significantly reduced the biofilm formation ability of all examined strains after 48 hours of incubation (P=0.0001). Moreover, the anti-biofilm activity of Zn/BG was significantly stronger than BG® (P=0.0001), which resulted in the formation of a weak biofilm (OD<1) compared with a moderately adhered biofilm observed with BG® (1<OD<2). Zn/BG showed a significant inhibitory effect on the biofilm formation of all examined periodontal pathogens. Given the enhanced regenerative and anti-biofilm properties of this novel biomaterial, further investigations are required for its implementation in clinical situations.

2019 ◽  
Vol 1 (2) ◽  
pp. 49
Author(s):  
Jemima Pramadita ◽  
Armelia Sari Widyarman

Introduction: Pomegranate (Punica granatum) fruit contains valuable ingredients, such as ellagitannins and flavonoids, that have many potential effects, including antibacterial, antifungal, and anti-inflammatory functions. Objectives: The aim of this study was to investigate the effects of pomegranate fruit juice on F. nucleatum and S. sanguinis monospecies and multispecies biofilm formation in vitro. Methods: Pomegranate juice was obtained using a juicer and diluted using a brain heart infusion (BHI) broth into five different concentrations. The biofilm assay was performed as follows: F. nucleatum and S. sanguinis were cultured separately in the BHI broth for 48 hours at 37°C in an anaerobic atmosphere. A 200 mL bacterial suspension (107 CFU/mL) was distributed into a 96-well plate and incubated for 24 hours to form  a biofilm. Subsequently, pomegranate juice was added to the biofilm well and observed after 1 hours, 3 hours, 6 hours, and 24 hours. The biofilm mass was measured using a microplate reader (490 nm) after crystal violet staining. Chlorhexidine (0.2%) and the biofilms without treatment were used as the positive and negative controls, respectively. The data were statistically analyzed using one-way analysis of variance, with p<0.05 as the level of significance. Result: There was a significant biofilm reduction after treatment with pomegranate juice for all the concentrations and incubation times (p<0.05). The effective concentrations to inhibit the biofilm monospecies F. nucleatum and S. sanguinis and the multispecies were 6.25% (OD 0.148±0.019), 50% (OD 0.211±0.026), and 6.25% (OD 0.024±0.209), respectively. Conclusion: Pomegranate juice inhibits F. nucleatum and S. sanguinis biofilm formation as a monospecies and a multispecies. Future studies are needed to observe the mechanism of this active substance.


2018 ◽  
Vol 11 (2) ◽  
pp. 521
Author(s):  
M. Vaishali ◽  
R.V. Geetha ◽  
Pradeep Kumar Rathinavelu

2020 ◽  
Vol 29 (Sup4) ◽  
pp. S25-S35
Author(s):  
Pornanong Aramwit ◽  
Supamas Napavichayanum ◽  
Prompong Pienpinijtham ◽  
Yousef Rasmi ◽  
Nipaporn Bang

Objective: To investigate the potential of sericin extracted by different methods to inhibit biofilm formation (prevention) and disrupt already formed biofilm (treatment). Method: In this in vitro study, sericin was extracted by heat, acid, alkali and urea. Streptococcus mutans bacteria were cultivated in the presence of various concentrations of sericin to evaluate antibiofilm formation using cell density assay (inhibition effect before biofilm formed). Conversely, various concentrations of sericin were added to a biofilm already formed by Streptococcus mutans bacteria, and the viability of bacteria assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay (disruption effects after biofilm formed). Structures of extracted sericin were evaluated using circular dichroism and Fourier-transform infrared spectrometer. Results: The urea-extracted sericin at all concentrations (12.5mg/ml, 25mg/ml, 50mg/ml and 100mg/ml) showed the highest potential antibiofilm activity in terms of both inhibition and disruption effects, compared with sericin extracted by heat, acid or alkali. The heat-extracted and acid-extracted sericin were found to reduce the biofilm formation dose-dependently, while the alkali-extracted sericin did not show either inhibition or disruption effect on the bacterial biofilm. The urea-extracted sericin also killed the bacteria residing within the biofilm, possibly due to its modified structure which may destabilise the bacterial cell wall, leading to membrane disintegration and, finally, cell death. Conclusion: Our results demostrated the antibiofilm activity of sericin. This could form the basis of further research on the mechanism and application of sericin as a novel antibiofilm agent.


2019 ◽  
Vol 8 (2) ◽  
pp. 54-63
Author(s):  
Annisa Rizka Fauziah ◽  
Meiska Bahar ◽  
Aprilla Ayu Wulandari

Biofilm of Salmonella spp. is formed through the expression of biofilm genes associated with proteins (bapA) regulated by curli synthesis genes (csg) which carry out adhesion, colonization, maturation, and dispersion on the surface of the intestinal epithelium. This study aimed to determine the antibiofilm activity of Lactobacillus casei Shirota’S strain (LcS) as an inhibitor of Salmonella spp. biofilm formation in vitro. This research was a true experimental study using Microtiter Plate 96 wells Biofilm Assay method. The sample used was the suspension of Salmonella spp. The treatment was in the form of adding a LcS suspension with a concentration series of 10-1;10-2; 10-3;10-4; and 10-5. Biofilm measurements were carried out using a microplate reader and obtained quantitative data in the form of Optical Density at a wavelength of 595nm. The results of this study showed that LcS suspension has antibiofilm activity ranging from 10-5 concentrations with a percentage of 36.58% (p<0.05). The results of exometabolism LcS can reduce Salmonella growth. Exopolysaccharide (EPS) and sortase-dependent proteins (SrtA) of LcS form barriers as competitive adhesion in inhibiting pathogenic biofilm formation.


2019 ◽  
Vol 2 (1) ◽  
pp. 15
Author(s):  
Jemima Pramadita ◽  
Armelia Sari Widyarman

  Introduction: Pomegranate (Punica granatum) fruit contains valuable ingredients, such as ellagitannins and flavonoids, that have many potential effects, including antibacterial, antifungal, and anti-inflammatory functions.   Objectives: The aim of this study was to investigate the effects of pomegranate fruit juice on F. nucleatum and S. sanguinis monospecies and multispecies biofilm formation in vitro.   Methods: Pomegranate juice was obtained using a juicer and diluted using a brain heart infusion (BHI) broth into five different concentrations. The biofilm assay was performed as follows: F. nucleatum and S. sanguinis were cultured separately in the BHI broth for 48 hours at 37°C in an anaerobic atmosphere. A 200 mL bacterial suspension (107 CFU/mL) was distributed into a 96-well plate and incubated for 24 hours to form  a biofilm. Subsequently, pomegranate juice was added to the biofilm well and observed after 1 hours, 3 hours, 6 hours, and 24 hours. The biofilm mass was measured using a microplate reader (490 nm) after crystal violet staining. Chlorhexidine (0.2%) and the biofilms without treatment were used as the positive and negative controls, respectively. The data were statistically analyzed using one-way analysis of variance, with p<0.05 as the level of significance.   Result: There was a significant biofilm reduction after treatment with pomegranate juice for all the concentrations and incubation times (p<0.05). The effective concentrations to inhibit the biofilm monospecies F. nucleatum and S. sanguinis and the multispecies were 6.25% (OD 0.148±0.019), 50% (OD 0.211±0.026), and 6.25% (OD 0.024±0.209), respectively.   Conclusion: Pomegranate juice inhibits F. nucleatum and S. sanguinis biofilm formation as a monospecies and a multispecies. Future studies are needed to observe the mechanism of this active substance.


Antibiotics ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 625
Author(s):  
Fatma Y. Ahmed ◽  
Usama Farghaly Aly ◽  
Rehab Mahmoud Abd El-Baky ◽  
Nancy G. F. M. Waly

Most of the infections caused by multi-drug resistant (MDR) P. aeruginosa strains are extremely difficult to be treated with conventional antibiotics. Biofilm formation and efflux pumps are recognized as the major antibiotic resistance mechanisms in MDR P. aeruginosa. Biofilm formation by P. aeruginosa depends mainly on the cell-to-cell communication quorum-sensing (QS) systems. Titanium dioxide nanoparticles (TDN) have been used as antimicrobial agents against several microorganisms but have not been reported as an anti-QS agent. This study aims to evaluate the impact of titanium dioxide nanoparticles (TDN) on QS and efflux pump genes expression in MDR P. aeruginosa isolates. The antimicrobial susceptibility of 25 P. aeruginosa isolates were performed by Kirby–Bauer disc diffusion. Titanium dioxide nanoparticles (TDN) were prepared by the sol gel method and characterized by different techniques (DLS, HR-TEM, XRD, and FTIR). The expression of efflux pumps in the MDR isolates was detected by the determination of MICs of different antibiotics in the presence and absence of carbonyl cyanide m-chlorophenylhydrazone (CCCP). Biofilm formation and the antibiofilm activity of TDN were determined using the tissue culture plate method. The effects of TDN on the expression of QS genes and efflux pump genes were tested using real-time polymerase chain reaction (RT-PCR). The average size of the TDNs was 64.77 nm. It was found that TDN showed a significant reduction in biofilm formation (96%) and represented superior antibacterial activity against P. aeruginosa strains in comparison to titanium dioxide powder. In addition, the use of TDN alone or in combination with antibiotics resulted in significant downregulation of the efflux pump genes (MexY, MexB, MexA) and QS-regulated genes (lasR, lasI, rhll, rhlR, pqsA, pqsR) in comparison to the untreated isolate. TDN can increase the therapeutic efficacy of traditional antibiotics by affecting efflux pump expression and quorum-sensing genes controlling biofilm production.


Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1758
Author(s):  
Urszula Wójcik-Bojek ◽  
Joanna Rywaniak ◽  
Przemysław Bernat ◽  
Anna Podsędek ◽  
Dominika Kajszczak ◽  
...  

Staphylococcus aureus is still one of the leading causes of both hospital- and community-acquired infections. Due to the very high percentage of drug-resistant strains, the participation of drug-tolerant biofilms in pathological changes, and thus the limited number of effective antibiotics, there is an urgent need to search for alternative methods of prevention or treatment for S. aureus infections. In the present study, biochemically characterized (HPLC/UPLC–QTOF–MS) acetonic, ethanolic, and water extracts from fruits and bark of Viburnum opulus L. were tested in vitro as diet additives that potentially prevent staphylococcal infections. The impacts of V. opulus extracts on sortase A (SrtA) activity (Fluorimetric Assay), staphylococcal protein A (SpA) expression (FITC-labelled specific antibodies), the lipid composition of bacterial cell membranes (LC-MS/MS, GC/MS), and biofilm formation (LIVE/DEAD BacLight) were assessed. The cytotoxicity of V. opulus extracts to the human fibroblast line HFF-1 was also tested (MTT reduction). V. opulus extracts strongly inhibited SrtA activity and SpA expression, caused modifications of S. aureus cell membrane, limited biofilm formation by staphylococci, and were non-cytotoxic. Therefore, they have pro-health potential. Nevertheless, their usefulness as diet supplements that are beneficial for the prevention of staphylococcal infections should be confirmed in animal models in the future.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Qun Zhang ◽  
Zengqiang Qu ◽  
Yanqing Zhou ◽  
Jin Zhou ◽  
Junwei Yang ◽  
...  

Abstract Background Cornin is a commonly used herb in cardiology for its cardioprotective effect. The effect of herbs on the activity of cytochrome P450 enzymes (CYP450s) can induce adverse drug-drug interaction even treatment failure. Therefore, it is necessary to investigate the effect of cornin on the activity of CYP450s, which can provide more guidance for the clinical application of cornin. Methods Cornin (100 μM) was incubated with eight isoforms of CYP450s, including CYP1A2, 2A6, 3A4, 2C8, 2C9, 2C19, 2D6, and 2E1, in pooled human liver microsomes. The inhibition model and corresponding parameters were also investigated. Results Cornin exerted significant inhibitory effect on the activity of CYP3A4, 2C9, and 2E1 in a dose-dependent manner with the IC50 values of 9.20, 22.91, and 14.28 μM, respectively (p < 0.05). Cornin inhibited the activity of CYP3A4 non-competitively with the Ki value of 4.69 μM, while the inhibition of CYP2C9 and 2E1 by cornin was competitive with the Ki value of 11.31 and 6.54 μM, respectively. Additionally, the inhibition of CYP3A4 by cornin was found to be time-dependent with the KI/Kinact value of 6.40/0.055 min− 1·μM− 1. Conclusions The inhibitory effect of cornin on the activity of CYP3A4, 2C9, and 2E1 indicated the potential drug-drug interaction between cornin and drugs metabolized by these CYP450s, which needs further investigation and validation.


Materials ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 4383
Author(s):  
Barbara Lapinska ◽  
Aleksandra Szram ◽  
Beata Zarzycka ◽  
Janina Grzegorczyk ◽  
Louis Hardan ◽  
...  

Modifying the composition of dental restorative materials with antimicrobial agents might induce their antibacterial potential against cariogenic bacteria, e.g., S.mutans and L.acidophilus, as well as antifungal effect on C.albicans that are major oral pathogens. Essential oils (EOs) are widely known for antimicrobial activity and are successfully used in dental industry. The study aimed at evaluating antibacterial and antifungal activity of EOs and composite resin material (CR) modified with EO against oral pathogens. Ten EOs (i.e., anise, cinnamon, citronella, clove, geranium, lavender, limette, mint, rosemary thyme) were tested using agar diffusion method. Cinnamon and thyme EOs showed significantly highest antibacterial activity against S.mutans and L.acidophilus among all tested EOs. Anise and limette EOs showed no antibacterial activity against S.mutans. All tested EOs exhibited antifungal activity against C.albicans, whereas cinnamon EO showed significantly highest and limette EO significantly lowest activity. Next, 1, 2 or 5 µL of cinnamon EO was introduced into 2 g of CR and microbiologically tested. The modified CR showed higher antimicrobial activity in comparison to unmodified one. CR containing 2 µL of EO showed the best antimicrobial properties against S.mutans and C.albicans, while CR modified with 1 µL of EO showed the best antimicrobial properties against L.acidophilus.


2004 ◽  
Vol 91 (03) ◽  
pp. 473-479 ◽  
Author(s):  
Ana Guimarães ◽  
Dingeman Rijken

SummaryTAFIa was shown to attenuate fibrinolysis. In our in vitro study, we investigated how the inhibitory effect of TAFIa depended on the type and concentration of the plasminogen activator (PA). We measured PA-mediated lysis times of plasma clots under conditions of maximal TAFI activation by thrombin-thrombomodulin in the absence and presence of potato carboxypeptidase inhibitor. Seven different PAs were compared comprising both tPA-related (tPA, TNK-tPA, DSPA), bacterial PA-related (staphylokinase and APSAC) and urokinase-related (tcu-PA and k2tu-PA) PAs. The lysis times and the retardation factor were plotted against the PA concentration. The retardation factor plots were bell-shaped. At low PA concentrations, the retardation factor was low, probably due to the limited stability of TAFIa. At intermediate PA concentrations the retardation factor was maximal (3-6 depending on the PA), with TNK-tPA, APSAC and DSPA exhibiting the strongest effect. At high PA concentrations, the retardation factor was again low, possibly due to inactivation of TAFIa by plasmin or to a complete conversion of glu-plasminogen into lys-plasminogen. Using individual plasmas with a reduced plasmin inhibitor activity (plasmin inhibitor Enschede) the bell-shaped curve of the retardation factor shifted towards lower tPA and DSPA concentrations, but the height did not decrease. In conclusion, TAFIa delays the lysis of plasma clots mediated by all the plasminogen activators tested. This delay is dependent on the type and concentration of the plasminogen activator, but not on the fibrin specificity of the plasminogen activator. Furthermore, plasmin inhibitor does not play a significant role in the inhibition of plasma clot lysis by TAFI.


Sign in / Sign up

Export Citation Format

Share Document