scholarly journals The use of gabbro dust in the cold recycling of asphalt paving mixes with foamed bitumen

2016 ◽  
Vol 64 (4) ◽  
pp. 763-773 ◽  
Author(s):  
M. Iwański ◽  
P. Buczyński ◽  
G. Mazurek

Abstract Mineral fines are a waste product of aggregate production in quarries and asphalt mixing plants. The incorporation of mineral gabbro dust into foam bitumen causes developing of a mesh reinforcement in the recycled base mixture. This mesh reinforcement, observed in a recycled base structure, induces an increase in stiffness modulus, where its elastic part of complex modulus dominates over the imaginary part. Therefore, it is possible to create a recycled mixture with a lower susceptibility to loading time/temperature. In result, the presence of gabbro dust in recycled mixture limits the magnitude of strains induced by the traffic load. This paper presents the results of the tests carried out on the mineral dusts derived from gabbro rock. Structural and functional properties of the fines were determined to prepare their characteristics. Then, the cold recycled mixtures for the road base were designed with the 5–20% mineral fines content. The mixtures were prepared in cold recycling technology with foamed bitumen. Further tests involved determining mechanical and physical properties of the recycled mixes, including air voids content, Marshall stability, Marshall quotient (stiffness), indirect tensile strength and stiffness modulus at 20°C). The results indicated a positive influence of the gabbro dusts on the investigated parameters. With the use of ANOVA tests, the significance of the influence of the gabbro dust and foamed bitumen on these properties was evaluated. Harrington’s multicriteria method was employed to establish gabbro dust and foamed bitumen amounts, the addition of which would guarantee optimal properties of the recycled base mixture.

2021 ◽  
Vol 4 (6) ◽  
Author(s):  
Zecheng Ni ◽  
Shijing Chen ◽  
Yihuan Li ◽  
Hongxi Peng ◽  
Jiawen Liang ◽  
...  

The early asphalt pavement in our country severely reduced the road performance due to various external factors during the use process. According to incomplete statistics, there are more asphalt pavements that need to be renovated and repaired every year in China, and the amount of construction waste such as asphalt concrete and other construction waste reaches 1,000. About ten thousand tons. If such a huge amount of construction waste is not used, it will inevitably cause great pollution to the environment. If it can be reused, not only will it be environmentally friendly and energy-saving, it will also save more than one billion yuan in costs. In view of the above problems, this article conducts related Research and Analysis on the Principle in Plant Cold Recycling for Foamed Bitumen and Mixture Performance to provide reference for future projects.


2016 ◽  
Vol 11 (4) ◽  
pp. 291-301 ◽  
Author(s):  
Marek Iwański ◽  
Anna Chomicz-Kowalska

This paper presents findings of a study concerning the influence of binder type on the mechanical properties of road base in the cold recycling technology. The principal aim of this investigation was to evaluate the mixes in scope of susceptibility to moisture and low-temperatures. In the comparative research foamed bitumen and bitumen emulsion were used in four different concentrations (2.0%, 2.5%, 3.0%, 3.5%). The materials used in the study were reclaimed from an existing road construction layers: reclaimed aggregate from the road base and reclaimed asphalt pavement obtained by milling the surface and binder course. Portland cement in 2.0% concentration was used as a hydraulic binder. The evaluated parameters were: indirect tensile strengths, tensile strength retained and indirect tensile stiffness modulus at 25 °C. These tests were complemented by an evaluation of susceptibility to moisture and frost according to modified procedures implemented by American researchers: Tunnicliff, Root and Lottman. Moreover, tests for low-temperature cracking were conducted according to Finnish standard. The investigations showed that the use of foamed bitumen for road base layer produced in the cold recycling technology results in better mechanical properties and resistance to moisture and frost compared to using bitumen emulsion. The use of 2.5% of foamed bitumen and 2.0% of Portland cement in the recycled road base allowed to meet the established criteria.


Author(s):  
Przemysław Buczynski ◽  
Marek Iwanski

This article presents a laboratory evaluation of the viscoelastic properties of recycled base courses produced with different fillers. The aim of this study was to investigate the influence of loading time and temperature on the complex modulus (E*) and the phase angle (6) of recycled base courses with respect to selected additives used. The mixtures contained reclaimed asphalt pavement RAP, crushed stone from existing base courses and virgin aggregate. Foamed bitumen 50/70 at 2.5% was used as a binder. The hydraulic binder constituted 3.0% of the recycled base course mixture. Portland cement, hydrated lime and cement kiln dust CKD were added as fillers. Evaluation of rheological properties of recycled base courses according to selected additives was carried out to the procedure set out in EN 12697-26 annex D. The evaluation of stiffness modulus was conducted in the direct tension- compression test on cylindrical samples (DTC-CY). The samples were subjected to the cycles of sinusoidal strain with an amplitude Bo < 25μB. All tests were performed over a range of temperatures (5 ºC, 13 ºC, 25 ºC, 40 ºC) and loading times (0.1 Hz, 0.3 Hz, 1 Hz, 3 Hz, 10 Hz, 20 Hz). The results were used to model stiffness modulus master curves of the recycled base courses containing selected additives in the hydraulic binder.


2015 ◽  
Vol 11 (2) ◽  
pp. 115-120
Author(s):  
Juraj Šrámek

Abstract The deformational properties of asphalt mixtures measured by dynamic methods and fatigue allow a design the road to suit the expected traffic load. Quality of mixtures is also expressed by the resistance to permanent deformation. Complex modulus of stiffness and fatigue can reliably characterize the proposed mixture of asphalt pavement. The complex modulus (E*) measurement of asphalt mixtures are carried out in laboratory of Department of Construction Management at University of Žilina by two-point bending test method on trapezoid-shaped samples. Today, the fatigue is verified on trapezoid-shaped samples and is assessed by proportional strain at 1 million cycles (ε6). The test equipment and software is used to evaluate fatigue and deformation characteristics.


2021 ◽  
Author(s):  
Kateryna Krayushkina ◽  
Tetiana Khymeryck ◽  
Kyrylo Fedorenko

Until recently, the most common way for recovering of damaged and worn asphalt pavements on Ukrainian roads remains the provision of additional reinforced layers over the old pavement with patching. However, such measures give only a short-term effect because after one or two years, the existing deformations and fractures beneath reinforced layers occur, especially in conditions of insufficient strength of the foundations. But nowadays, recycling technology of different variations became the main method of existing pavement renovation. The economic attractiveness of cold recycling technology is primarily in the reuse of existing road material for arrangement of new pavement layers, so there is no need to arrange special areas for storage and disposal of old asphalt. In addition, the use of such technology helps to minimize the harmful impacts on the environment during road repair works. The essence of cold recycling technology, which is the most widely used in Ukraine for the arrangement of a road foundation layer, is in the fact that the defective and destroyed pavement layers are strengthened directly by complex admixtures of organic (hot bitumen, bituminous emulsion, foamed bitumen) and mineral suspensions, lime) binders. Cold recycling, according to the complications of the work, is divided into several types, depending of the depth of cutting. The choice of a particular type of recovery depends mainly on the condition of the entire pavement structure, which is determined prior to the start of repair works. Optimal mis design of the organic and mineral mixture for the arrangement of the road foundation layer by cold recycling technology is also executed before the beginning of the works. Actually, the main direction of cold recycling technology research in Ukraine is the usage of new materials such as fiber - basalt or polymer, stabilizing additives (ionic or polymeric), industrial waste - slags of various types of production or other by-products. Performed studies have shown that the use of organic and mineral mixtures of optimal design with the insertion of basalt fiber increases crack resistance and durability of the arranged road foundation layer.


Author(s):  
Helena Isabel Lacalle Jiménez ◽  
Jessica Tuck

Abstract The Defence Infrastructure Organisation requested a pavement evaluation on RAF Waddington and the results indicated that runway rehabilitation and reprofiling was needed in order to meet the physical design requirements set out in the Manual of Aerodrome Design & Safeguarding. The presence of tar in a layer of the old pavement promoted the option of cold recycling this material into the new structure. This paper presents the results from a laboratory investigation into the suitability of cold recycled foamed bitumen asphalt to be used in the structural layers of an airfield pavement. Laboratory mixture designs with foamed bitumen, incorporating asphalt planings from RAF Waddington runway, were produced in URS Infrastructure and Environment Ltd. laboratory. Specimens were used to assess mix performance and in order to add confidence to the design. The last objective of the research was to demonstrate that asphalt planings from RAF Waddington could be recycled into foamed asphalt for incorporation in the runway rehabilitation works. The optimum binder content was determined from Indirect Tensile Stiffness Modulus tests and Indirect Tensile Strength tests, concluding that the optimum binder content was 3.3% by mass. As a common practice in the UK, up to 1.5% by mass of cement was added to the mixture to improve early life performance. To assess the foamed bitumen samples’ performance with time, specimens were prepared and cured for 28, 180 and 360 days at different temperatures. Post curing, the specimens were tested for a range of performance criteria including fatigue, stiffness and durability. The study found that asphalt sampled from the runway at RAF Waddington can be recycled into foamed asphalt, meeting the requirements of Defence Infrastructure Organisation Specification 050.


Author(s):  
Floriana Costanzo ◽  
Elisa Fucà ◽  
Deny Menghini ◽  
Antonella Rita Circelli ◽  
Giovanni Augusto Carlesimo ◽  
...  

Event-based prospective memory (PM) was investigated in children with Attention deficit/hyperactivity disorder (ADHD), using a novel experimental procedure to evaluate the role of working memory (WM) load, attentional focus, and reward sensitivity. The study included 24 children with ADHD and 23 typically-developing controls. The experimental paradigm comprised one baseline condition (BC), only including an ongoing task, and four PM conditions, varying for targets: 1 Target (1T), 4 Targets (4T), Unfocal (UN), and Reward (RE). Children with ADHD were slower than controls on all PM tasks and less accurate on both ongoing and PM tasks on the 4T and UN conditions. Within the ADHD group, the accuracy in the RE condition did not differ from BC. A significant relationship between ADHD-related symptoms and reduced accuracy/higher speed in PM conditions (PM and ongoing trials), but not in BC, was detected. Our data provide insight on the adverse role of WM load and attentional focus and the positive influence of reward in the PM performance of children with ADHD. Moreover, the relation between PM and ADHD symptoms paves the road for PM as a promising neuropsychological marker for ADHD diagnosis and intervention.


2021 ◽  
Author(s):  
Maarten Soudijn ◽  
Sebastiaan van Rossum ◽  
Ane de Boer

<p>In this paper we present weight measurements of urban heavy traffic comparing two different Weigh In Motion (WIM) systems. One is a WIM-ROAD system using Lineas quartz pressure sensors in the road surface. The other is a WIM-BRIDGE system using optical fibre-based strain sensors which are applied under the bridge to the bottom fibre of a single span of the bridge deck. We have designed our tests to determine which system is most suited to Amsterdam. We put special focus on the accuracy that each system can achieve and have set up an extensive calibration program to determine this. Our ultimate goal is to draw up a realistic traffic load model for Amsterdam. This model would lead to a recommendation that can be used to re- examine the structural safety of existing historic bridges and quay walls, in addition to the current traffic load recommendations.</p>


2012 ◽  
Vol 204-208 ◽  
pp. 1857-1863
Author(s):  
Min Jiang Zhang ◽  
Wen Bo Zhang ◽  
Bao Yang Yu

Based on the theory of hierarchy analysis, the post-assessment indexes system of cold recycling technology project have been established, and the hierarchy analytic procedure have been used to determine the weighing coefficients for post-assessment indexes of cold recycling engineering of asphalt pavement, and the weighing values for various levels factors were given for the cold recycling base layer project of highway of Shenyang-Yingkou. Considering the road performance and economic benefit, societal and environmental benefit, the analytic hierarchy procedure (AHP) method can effectively avoid making wrong decisions subjectively and made it more scientific and reasonable to determine the weighing values of post-assessment indexes, and it is an effective method to determine the weighing values for post-assessment indexes of the cold recycling technology project.


Sign in / Sign up

Export Citation Format

Share Document