Identification of molecular species of oxidized triglyceride in plasma and its distribution in lipoproteins

Author(s):  
Rojeet Shrestha ◽  
Shu-Ping Hui ◽  
Yusuke Miura ◽  
Akiko Yagi ◽  
Yuji Takahashi ◽  
...  

AbstractThe role of triglycerides carried in the triglyceride-rich lipoproteins (TRL) in the progression of atherosclerosis is uncertain. Identification of oxidized triglycerides and its possible association with atherosclerosis were largely ignored. Here we applied mass spectrometric approach to detect and identify triglyceride hydroperoxides (TGOOH) in human plasma and lipoproteins.EDTA plasma was collected from healthy human volunteers (n=9) after 14–16 h of fasting. Very low-density lipoprotein (VLDL)We identified 11 molecular species of TGOOH in either plasma or VLDL and IDL, of which TGOOH-18:1/18:2/16:0, TGOOH-18:1/18:1/16:0, TGOOH-16:0/18:2/16:0, TGOOH-18:1/18:1/18:1, and TGOOH-16:0/20:4/16:0 were most dominant. These TGOOH molecules are carried by TRL but not by LDL and HDL. Mean concentration of TGOOH in plasma, VLDL and IDL were, respectively, 56.1±25.6, 349.8±253.6 and 512.5±173.2 μmol/mol of triglycerides.This is the first report to identify several molecular species of oxidized triglycerides in TRL. Presence of oxidized triglyceride may contribute to the atherogenicity of TRL. Further work is needed to elucidate the association of the oxidized triglyceride in atherosclerosis.

2001 ◽  
Vol 34 (1) ◽  
pp. 93-99 ◽  
Author(s):  
Naomi Osakabe ◽  
Seigo Baba ◽  
Akiko Yasuda ◽  
Tamami Iwamoto ◽  
Masumi Kamiyama ◽  
...  

2004 ◽  
Vol 50 (6) ◽  
pp. 679-684 ◽  
Author(s):  
Naomi Osakabe ◽  
Seigo Baba ◽  
Akiko Yasuda ◽  
Tamami Iwamoto ◽  
Masumi Kamiyama ◽  
...  

1997 ◽  
Vol 77 (04) ◽  
pp. 710-717 ◽  
Author(s):  
Marieke E van der Kaaden ◽  
Dingeman C Rijken ◽  
J Kar Kruijt ◽  
Theo J C van Berkel ◽  
Johan Kuiper

SummaryUrokinase-type plasminogen activator (u-PA) is used as a thrombolytic agent in the treatment of acute myocardial infarction. In vitro, recombinant single-chain u-PA (rscu-PA) expressed in E.coli is recognized by the Low-Density Lipoprotein Receptor-related Protein (LRP) on rat parenchymal liver cells. In this study we investigated the role of LRP in the liver uptake and plasma clearance of rscu-PA in rats. A preinjection of the LRP inhibitor GST-RAP reduced the maximal liver uptake of 125I-rscu-PA at 5 min after injection from 50 to 30% of the injected dose and decreased the clearance of rscu-PA from 2.37 ml/min to 1.58 ml/min. Parenchymal, Kupffer and endothelial cells were responsible for 40, 50 and 10% of the liver uptake, respectively. The reduction in liver uptake of rscu-PA by the preinjection of GST-RAP was caused by a 91 % and 62% reduction in the uptake by parenchymal and Kupffer cells, respectively. In order to investigate the part of rscu-PA that accounted for the interaction with LRP, experiments were performed with a mutant of rscu-PA lacking residues 11-135 (= deltal25- rscu-PA). Deletion of residues 11-135 resulted in a 80% reduction in liver uptake and a 2.4 times slower clearance (0.97 ml/min). The parenchymal, Kupffer and endothelial cells were responsible for respectively 60, 33 and 7% of the liver uptake of 125I-deltal25-rscu-PA. Preinjection of GST-RAP completely reduced the liver uptake of delta 125-rscu-PA and reduced its clearance to 0.79 ml/min. Treatment of isolated Kupffer cells with PI-PLC reduced the binding of rscu-PA by 40%, suggesting the involvement of the urokinase-type Plasminogen Activator Receptor (u-PAR) in the recognition of rscu-PA. Our results demonstrate that in vivo LRP is responsible for more than 90% of the parenchymal liver cell mediated uptake of rscu-PA and for 60% of the Kupffer cell interaction. It is also suggested that u-PAR is involved in the Kupffer cell recognition of rscu-PA.


2020 ◽  
Vol 27 (7) ◽  
pp. 1041-1051 ◽  
Author(s):  
Michael Spartalis ◽  
Eleftherios Spartalis ◽  
Antonios Athanasiou ◽  
Stavroula A. Paschou ◽  
Christos Kontogiannis ◽  
...  

Atherosclerotic disease is still one of the leading causes of mortality. Atherosclerosis is a complex progressive and systematic artery disease that involves the intima of the large and middle artery vessels. The inflammation has a key role in the pathophysiological process of the disease and the infiltration of the intima from monocytes, macrophages and T-lymphocytes combined with endothelial dysfunction and accumulated oxidized low-density lipoprotein (LDL) are the main findings of atherogenesis. The development of atherosclerosis involves multiple genetic and environmental factors. Although a large number of genes, genetic polymorphisms, and susceptible loci have been identified in chromosomal regions associated with atherosclerosis, it is the epigenetic process that regulates the chromosomal organization and genetic expression that plays a critical role in the pathogenesis of atherosclerosis. Despite the positive progress made in understanding the pathogenesis of atherosclerosis, the knowledge about the disease remains scarce.


Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Christina Grothusen ◽  
Harald Schuett ◽  
Stefan Lumpe ◽  
Andre Bleich ◽  
Silke Glage ◽  
...  

Introduction: Atherosclerosis is a chronic inflammatory disease of the cardiovascular system which may result in myocardial infarction and sudden cardiac death. While the role of pro-inflammatory signaling pathways in atherogenesis has been well characterized, the impact of their negative regulators, e.g. suppressor of cytokine signaling (SOCS)-1 remains to be elucidated. Deficiency of SOCS-1 leads to death 3 weeks post-partum due to an overwhelming inflammation caused by an uncontrolled signalling of interferon-gamma (IFNγ). This phenotype can be rescued by generating recombination activating gene (rag)-2, SOCS-1 double knock out (KO) mice lacking mature lymphocytes, the major source of IFNγ. Since the role of SOCS-1 during atherogenesis is unknown, we investigated the impact of a systemic SOCS-1 deficiency in the low-density lipoprotein receptor (ldlr) KO model of atherosclerosis. Material and Methods: socs-1 −/− /rag-2 −/− deficient mice were crossed with ldlr-KO animals. Mice were kept under sterile conditions on a normal chow diet. For in-vitro analyses, murine socs-1 −/− macrophages were stimulated with native low density lipoprotein (nLDL) or oxidized (ox)LDL. SOCS-1 expression was determined by quantitative PCR and western blot. Foam cell formation was determined by Oil red O staining. Results: socs-1 −/− /rag-2 −/− /ldlr −/− mice were born according to mendelian law. Tripel-KO mice showed a reduced weight and size, were more sensitive to bacterial infections and died within 120 days (N=17). Histological analyses revealed a systemic, necrotic, inflammation in Tripel-KO mice. All other genotypes developed no phenotype. In-vitro observations revealed that SOCS-1 mRNA and protein is upregulated in response to stimulation with oxLDL but not with nLDL. Foam cell formation of socs-1 −/− macrophages was increased compared to controls. Conclusion: SOCS-1 seemingly controls critical steps of atherogenesis by modulating foam cell formation in response to stimulation with oxLDL. SOCS-1 deficiency in the ldlr-KO mouse leads to a lethal inflammation. These observations suggest a critical role for SOCS-1 in the regulation of early inflammatory responses in atherogenesis.


2018 ◽  
Vol 38 (6) ◽  
Author(s):  
Li-ping He ◽  
Xing-sheng Zhao ◽  
Le-ping He

Background: The prevalence of coronary heart disease (CHD) appears to be high among Chinese Mongolians. MiR-23b has been proven to play a key role in atherosclerosis. The expression and role of miR-23b in the Mongolians at high cardiovascular risk were explored in the present study. Methods: Forty cases of blood samples from the Mongolians at high cardiovascular risk were enrolled in the present study. The expression of miR-23b was quantified by quantitative real-time PCR. To induce monocytes differentiation into macrophages, HP-1 cells were cultured with phorbol 12-myristate 13-acetate. The level of inflammatory markers was determined by the enzyme-linked immunosorbent assay. The interaction between miR-23b and A20 was explored by the dual luciferase reporter assay. Results: The expression of miR-23b in the Mongolian at high cardiovascular risk was higher than that in healthy Mongolian volunteers. Decrease in ATP-binding cassette transporter A1 caused by miR-23b is responsible for TC accumulation in the Mongolian at high cardiovascular risk. MiR-23b enhanced the oxidized low-density lipoprotein (oxLDL)-induced inflammatory response of THP-1 derived macrophage. MiR-23b regulated nuclear factor-κB (NF-κB) pathway through targeting A20. MiR-23b mediated oxLDL-induced inflammatory response of peripheral blood mononuclear cell in the Mongolian at high cardiovascular risk. Conclusion MiR-23b enhanced oxLDL-induced inflammatory response of macrophages in the Mongolian at high cardiovascular risk through the A20/NF-κB signaling pathway, and thus contributing to atherosclerosis.


Sign in / Sign up

Export Citation Format

Share Document