Capillary electrophoresis based on nucleic acid detection for diagnosing human infectious disease

Author(s):  
Dong-Sheng Lian ◽  
Shu-Jin Zhao

AbstractRapid transmission, high morbidity, and mortality are the features of human infectious diseases caused by microorganisms, such as bacteria, fungi, and viruses. These diseases may lead within a short period of time to great personal and property losses, especially in regions where sanitation is poor. Thus, rapid diagnoses are vital for the prevention and therapeutic intervention of human infectious diseases. Several conventional methods are often used to diagnose infectious diseases, e.g. methods based on cultures or morphology, or biochemical tests based on metabonomics. Although traditional methods are considered gold standards and are used most frequently, they are laborious, time consuming, and tedious and cannot meet the demand for rapid diagnoses. Disease diagnosis using capillary electrophoresis methods has the advantages of high efficiency, high throughput, and high speed, and coupled with the different nucleic acid detection strategies overcomes the drawbacks of traditional identification methods, precluding many types of false positive and negative results. Therefore, this review focuses on the application of capillary electrophoresis based on nucleic detection to the diagnosis of human infectious diseases, and offers an introduction to the limitations, advantages, and future developments of this approach.

Author(s):  
Dong-Sheng Lian ◽  
Xiang-Yuan Chen ◽  
Hua-Song Zeng ◽  
Yan-Yi Wang

AbstractMost hereditary diseases are incurable, but their deterioration could be delayed or stopped if diagnosed timely. It is thus imperative to explore the state-of-the-art and high-efficient diagnostic techniques for precise analysis of the symptoms or early diagnosis of pre-symptoms. Diagnostics based on clinical presentations, hard to distinguish different phenotypes of the same genotype, or different genotypes displaying similar phenotypes, are incapable of pre-warning the disease status. Molecular diagnosis is ahead of harmful phenotype exhibition. However, conventional gold-standard molecular classifications, such as karyotype analysis, Southern blotting (SB) and sequencing, suffer drawbacks like low automation, low throughput, prolonged duration, being labor intensive and high cost. Also, deficiency in flexibility and diversity is observed to accommodate the development of precise and individualized diagnostics. The aforementioned pitfalls make them unadaptable to the increasing clinical demand for detecting and interpreting numerous samples in a rapid, accurate, high-throughput and cost-effective manner. Nevertheless, capillary electrophoresis based on genetic information analysis, with advantages of automation, high speed, high throughput, high efficiency, high resolution, digitization, versatility, miniature and cost-efficiency, coupled with flexible-designed PCR strategies in sample preparation (PCR-CE), exhibit an excellent power in deciphering cryptic molecular information of superficial symptoms of genetic diseases, and can analyze in parallel a large number of samples in a single PCR-CE, thereby providing an alternative, accurate, customized and timely diagnostic tool for routine screening of clinical samples on a large scale. Thus, the present study focuses on CE-based nucleic acid analysis used for inherited disease diagnosis. Also, the limitations and challenges of this PCR-CE for diagnosing hereditary diseases are discussed.


Author(s):  
Zhusan Luo ◽  
Carl Schwarz

Abstract Integrally geared centrifugal compressors have found wide applications in air separation plants and the petrochemical industry because they can be readily designed to run at a higher efficiency than in-line compressors. Many of these compressors with multiple stages are designed to meet the demands for high power and high speed applications with high efficiency and high reliability. These requirements are challenges for their rotordynamic designs. Some compressors may experience excessive synchronous or subsynchronous vibrations during commissioning or in a short period of service. This study starts with discussing the vibration characteristics of a compressor pinion-bearing system, including undamped critical speeds, unbalance responses, and rotordynamic stability. To improve the rotordynamic performance, a systematic and feasible approach for modifying a rotordynamic design has been proposed. It has been showed that damped modes at an operating speed are key indicators of the rotordynamic performance. The sensitivities of damped modes to main design variables, i.e. bearing geometry, shaft geometry and impeller mass properties, are thoroughly examined. A procedure for design modification is proposed for general guidance. The feasibility and effectiveness of this method have been demonstrated in the modification of a pinion-bearing system. In addition, this paper also proposes a method to evaluate the torsional natural frequencies of an equivalent pinion model and briefly discusses the application of optimal design methodology to the rotordynamic design modification.


Micromachines ◽  
2020 ◽  
Vol 11 (3) ◽  
pp. 288
Author(s):  
Xiufang Liu ◽  
Jinyuan Li ◽  
Liangyu Zhang ◽  
Xiaowei Huang ◽  
Umar Farooq ◽  
...  

Cell lysis is a process of breaking cell membranes to release intracellular substances such as DNA, RNA, protein, or organelles from a cell. The detection of DNA, RNA, or protein from the lysed cells is of importance for cancer diagnostics and drug screening. In this study, we develop a microbubble array that enables the realization of multiple cell lysis induced by the shear stress resulting from the individual oscillating microbubbles. The oscillating microbubbles in the channel have similar vibration amplitudes, and the intracellular substances can be released from the individual cells efficiently. Moreover, the efficiency of cell lysis increases with increments of input voltage and sonication time. By means of DNA agarose-gel electrophoresis, a sufficient extraction amount of DNA released from the lysed cells can be detected, and there is no significant difference in lysis efficiency when compared to cell lysis achieved using commercial kits. With the advantages of the simple manufacturing process, low cost, high efficiency, and high speed, this device can serve as an efficient and versatile tool for the single-cell sequencing of cell biology research, disease diagnosis, and stem cell therapy.


Lab on a Chip ◽  
2018 ◽  
Vol 18 (13) ◽  
pp. 1928-1935 ◽  
Author(s):  
Wenhan Liu ◽  
Jagotamoy Das ◽  
Adam H. Mepham ◽  
Carine R. Nemr ◽  
Edward H. Sargent ◽  
...  

Integrated devices for automated nucleic acid testing (NAT) are critical for infectious disease diagnosis to be performed outside of centralized laboratories.


2020 ◽  
Author(s):  
Marijn van den Brink ◽  
Sebastian T. Tandar ◽  
Tim A. P. van den Akker ◽  
Sinisha Jovikj ◽  
Violette Defourt ◽  
...  

AbstractIn the last three decades, there have been recurring outbreaks of infectious diseases, brought to light with the recent outbreak of coronavirus disease 2019 (COVID-19). Attempts to effectively contain the spread of infectious diseases have been hampered by the lack of rapidly adaptable, accurate, and accessible point-of-care diagnostic testing. In this study, we present a novel design of a label-free DNAzyme-based detection method called Rapidemic. This assay combines recombinase polymerase amplification (RPA) with linear strand-displacement amplification (LSDA) and guanine-quadruplex (GQ) DNAzyme-catalysed colour-changing reaction. The colorimetry basis of the signal readout omits the need for extensive instrumentation. Moreover, the primer-based sequence detection of RPA gives Rapidemic a potential to be rapidly adapted to target a new sequence. As a proof of concept, we developed the assay to detect isolated genomic DNA of Saccharomyces cerevisiae. The use of low-pH buffers and the optimization of the dilution rates from each preceding reaction to the next showed to be successful strategies to enable visible detection with this method. These findings demonstrate for the first time that a label-free DNAzyme-based detection method can be coupled to RPA and LSDA for nucleic acid detection.


2011 ◽  
Vol 328-330 ◽  
pp. 120-123 ◽  
Author(s):  
Feng Lian Zhang ◽  
Jing Zhu

With the development of science and technology, microfludic chip has become the leading edge in biochip research field, representing major development trend of micro-total analysis system (μ-TAS).Having features of high speed, high efficiency, low consumption etc., it possesses extensive application prospect in fields of gene analysis, disease diagnosis, drug screening etc.. Traditional microfludic chip adopts silicon slice, glass etc. materials to conduct processing with complex technique and high cost chip, thus it is not in favor of promotion and application of chip. The research on hot embossing and bonding machine for plastic microfludic chips fabrication is that to provide efficient processing machine for chip market which is expanded with each passing day. Based on present hot embossing technology of plastic microfludic chips and aimed to realize automation and batch process, the thesis conducts design research on mechanical construction of hot embossing and bonding machine for chips.


Life ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1356
Author(s):  
Sangha Kwon ◽  
Ha Youn Shin

Rapid and precise diagnostic tests can prevent the spread of diseases, including worldwide pandemics. Current commonly used diagnostic methods include nucleic-acid-amplification-based detection methods and immunoassays. These techniques, however, have several drawbacks in diagnosis time, accuracy, and cost. Nucleic acid amplification methods are sensitive but time-consuming, whereas immunoassays are more rapid but relatively insensitive. Recently developed CRISPR-based nucleic acid detection methods have been found to compensate for these limitations. In particular, the unique collateral enzymatic activities of Cas12 and Cas13 have dramatically reduced the diagnosis times and costs, while improving diagnostic accuracy and sensitivity. This review provides a comprehensive description of the distinct enzymatic features of Cas12 and Cas13 and their applications in the development of molecular diagnostic platforms for pathogen detection. Moreover, it describes the current utilization of CRISPR-Cas-based diagnostic techniques to identify SARS-CoV-2 infection, as well as recent progress in the development of CRISPR-Cas-based detection strategies for various infectious diseases. These findings provide insights into designing effective molecular diagnostic platforms for potential pandemics.


Author(s):  
Mujahed I. Mustafa ◽  
Abdelrafie M. Makhawi

Infectious diseases are one of the most intimidating threats to human race, responsible for an immense burden of disabilities and deaths. Rapid diagnosis and treatment of infectious diseases is a better understanding of its pathogenesis. According to WHO, the ideal approach for detecting foreign pathogens should be rapid, specific, sensitive, instrument-free and cost-effective. Nucleic acid pathogen detection methods, typically PCR have numerous limitations, such as highly sophisticated equipments, reagents, and trained personnel rely on well-established laboratories beside time-consuming. Thus, there is a crucial need to develop novel nucleic acid detection tools with rapid, specific, sensitive, and cost-effective, particularly ones that can be used for versatile point-of-care diagnostic applications. Two new methods exploit on unpredicted in vitro properties CRISPR-Cas effectors, turning activated nucleases into basic amplifiers of a specific nucleic-acid binding event. These effectors are attached with a diversity of reporters and utilized in tandem with present of isothermal amplification approaches to create sensitive identification in multiple field deployable formats. Although still in their beginning, yet SHERLOCK and DETECTR technologies are potential methods for rapid detection and identification of infectious disease, with ultra-sensitive tests that don't require a lot of complicated processing. This review described SHERLOCK and DETECTR technologies beside their properties, functions, and perspectives to become the ultimate diagnostic tools for diagnosing infectious diseases and curbing disease outbreaks.


2020 ◽  
Vol 20 (12) ◽  
pp. 7369-7375
Author(s):  
Yile Fang ◽  
Pei Liao ◽  
Zhu Chen ◽  
Hui Chen ◽  
Yanqi Wu ◽  
...  

Because it has many advantages such as rapidity and accuracy, nucleic acid detection is applied to infectious disease diagnosis more and more. An automatic integrated nucleic acid detection system based on real-time PCR is developed by our research group to conduct point-of-care testing of infectious pathogens. The home-made detection system collects fluorescence data in each PCR cycle through an integrated dual-channel fluorescence detection module and then real-time fluorescence curves are drawn by the software, which can tell the results of the diagnostics after some processing and analysis. However, owing to the disturbance of the environment or the imperfect of nucleic acid extraction before PCR, the fluorescence curves sometimes may contain several abnormal points. For the purpose of enhancing its ability to deal with these iffy curves and improve the accuracy of the testing results, in this study, the SDM-based qPCR data processing algorithm was studied and 11 groups of qPCR data that have different flaws from the clinical samples detected by this system were chosen to prove the practicability of the method. In comparison with the conventional threshold-based method, the Cq values calculated by the SDM-based method were more close to the actual values, meaning it can overcome the shortcomings of the conventional methods such as being unable to accommodate noise and being unable to avoiding abnormal data. With the improvement of this data processing algorithm, the stability of our system and the reliability and accuracy of the results are greatly improved.


Sign in / Sign up

Export Citation Format

Share Document