scholarly journals Antiplasmodial potential of Eucalyptus obliqua leaf methanolic extract against Plasmodium vivax: An in vitro study

2021 ◽  
Vol 19 (1) ◽  
pp. 1023-1028
Author(s):  
Shehzad Zareen ◽  
Shahid Niaz Khan ◽  
Muhammad Adnan ◽  
Sumbal Haleem ◽  
Rehman Ali ◽  
...  

Abstract Malaria is an intraerythrocytic parasitic disease caused by the genus Plasmodium of which Plasmodium vivax and Plasmodium falciparum are the major species. The high cost and associated side effects of antimalarial drugs triggered research about medicinal plants to develop alternative and low-cost drugs with lesser side effects. Therefore, this study was designed to investigate the antiplasmodial activity of the Eucalyptus obliqua L’Hér. leaf extract against P. vivax and its phytochemicals in in vitro. The methanolic extract of E. obliqua was prepared and different concentrations of the crude extract and phytochemicals were used against P. vivax. The methanolic extract of E. obliqua showed profound antiplasmodial activity (LD50 0.084 mg/mL; 80.04%) at 0.1 mg/mL concentration after 24 h. Alkaloids, flavonoids, saponins, and tannins were found in the E. obliqua methanolic extract. Only alkaloids at the concentration (0.1 mg/mL) exhibited 60.93% inhibition of P. vivax. The methanolic extract of E. obliqua exhibits antiplasmodial activity in vitro. However, in vivo efficacy is an important aspect in the testing of medicinal plants against parasitic infections and should be evaluated in future.

2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Bibianne Waiganjo ◽  
Gervason Moriasi ◽  
Jared Onyancha ◽  
Nelson Elias ◽  
Francis Muregi

Malaria is a deadly disease caused by a protozoan parasite whose mode of transmission is through a female Anopheles mosquito. It affects persons of all ages; however, pregnant mothers, young children, and the elderly suffer the most due to their dwindled immune state. The currently prescribed antimalarial drugs have been associated with adverse side effects ranging from intolerance to toxicity. Furthermore, the costs associated with conventional approach of managing malaria are arguably high especially for persons living in low-income countries, hence the need for alternative and complementary approaches. Medicinal plants offer a viable alternative because of their few associated side effects, are arguably cheaper, and are easily accessible. Based on the fact that studies involving antimalarial medicinal plants as potential sources of efficacious and cost-effective pharmacotherapies are far between, this research was designed to investigate antiplasmodial and cytotoxic activities of organic and aqueous extracts of selected plants used by Embu traditional medicine practitioners to treat malaria. The studied plants included Erythrina abyssinica (stem bark), Schkuhria pinnata (whole plant), Sterculia africana (stem bark), Terminalia brownii (leaves), Zanthoxylum chalybeum (leaves), Leonotis mollissima (leaves), Carissa edulis (leaves), Tithonia diversifolia (leaves and flowers), and Senna didymobotrya (leaves and pods). In vitro antiplasmodial activity studies of organic and water extracts were carried out against chloroquine-sensitive (D6) and chloroquine-resistance (W2) strains of Plasmodium falciparum. In vivo antiplasmodial studies were done by Peter’s four-day suppression test to test for their in vivo antimalarial activity against P. berghei. Finally, cytotoxic effects and safety of the studied plant extracts were evaluated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) rapid calorimetric assay technique. The water and methanolic extracts of T. brownii and S. africana and dichloromethane extracts of E. abyssinica, S. pinnata, and T. diversifolia leaves revealed high in vitro antiplasmodial activities (IC50≤10 μg/ml). Further, moderate in vivo antimalarial activities were observed for water and methanolic extracts of L. mollissima and S. africana and for dichloromethane extracts of E. abyssinica and T. diversifolia leaves. In this study, aqueous extracts of T. brownii and S. africana demonstrated high antiplasmodial activity and high selectivity indices values (SI≥10) and were found to be safe. It was concluded that T. brownii and S. africana aqueous extracts were potent antiplasmodial agents. Further focused studies geared towards isolation of active constituents and determination of in vivo toxicities to ascertain their safety are warranted.


2019 ◽  
Vol 20 (12) ◽  
pp. 1227-1243
Author(s):  
Hina Qamar ◽  
Sumbul Rehman ◽  
D.K. Chauhan

Cancer is the second leading cause of morbidity and mortality worldwide. Although chemotherapy and radiotherapy enhance the survival rate of cancerous patients but they have several acute toxic effects. Therefore, there is a need to search for new anticancer agents having better efficacy and lesser side effects. In this regard, herbal treatment is found to be a safe method for treating and preventing cancer. Here, an attempt has been made to screen some less explored medicinal plants like Ammania baccifera, Asclepias curassavica, Azadarichta indica, Butea monosperma, Croton tiglium, Hedera nepalensis, Jatropha curcas, Momordica charantia, Moringa oleifera, Psidium guajava, etc. having potent anticancer activity with minimum cytotoxic value (IC50 >3μM) and lesser or negligible toxicity. They are rich in active phytochemicals with a wide range of drug targets. In this study, these medicinal plants were evaluated for dose-dependent cytotoxicological studies via in vitro MTT assay and in vivo tumor models along with some more plants which are reported to have IC50 value in the range of 0.019-0.528 mg/ml. The findings indicate that these plants inhibit tumor growth by their antiproliferative, pro-apoptotic, anti-metastatic and anti-angiogenic molecular targets. They are widely used because of their easy availability, affordable price and having no or sometimes minimal side effects. This review provides a baseline for the discovery of anticancer drugs from medicinal plants having minimum cytotoxic value with minimal side effects and establishment of their analogues for the welfare of mankind.


Author(s):  
Shubhi Rastogi ◽  
Mohammed Shariq Iqbal ◽  
Deepak Ohri

 Objective: The objective of the present work is to study the in vitro anti-inflammatory and antioxidant activity of medicinal plants. The extent and correlation between anti-inflammatory and antioxidant activity have been studied.Method: Methanolic and aqueous extracts of five medicinal plants, namely, Ficus racemosa, Aloe vera, Cannabis sativa, Datura stramonium, and Calotropis gigantean have been taken for in vitro anti-inflammatory and total antioxidant activity.Result: The study showed that the inhibition of protein (albumin) denaturation was maximum in aqueous extract of A. vera with 97.55±1.45%. Proteinase inhibitory action of different plant extracts showed significant action and was found to be maximum in aqueous extract of D. stramonium with 87.89±2.58%. Heat-induced hemolysis showed that maximum inhibition was with aqueous extract of F. racemosa with 90.72±3.33%. When hypotonicity-induced hemolysis activity was done it was found maximum in methanolic extract of C. gigantea with 90.58±3.04%. Anti-lipoxygenase activity was found maximum in methanolic extract of F. racemosa with 94.05±4.24%. When total antioxidant activity was done, it was found highest in F. racemosa (4.38±0.546 mM equivalent of ascorbic acid/g tissue).Conclusion: An overall strong positive correlation between anti-inflammatory and antioxidant activity was observed, indicating that antioxidant activity of the plant species studied might be responsible for their anti-inflammatory property. Further work needs to be undertaken to fully elucidate the antioxidants responsible for anti-inflammatory action and to develop better herbal drug formulations.


Planta Medica ◽  
2014 ◽  
Vol 80 (06) ◽  
pp. 482-489 ◽  
Author(s):  
Raymond Muganga ◽  
Luc Angenot ◽  
Monique Tits ◽  
Michel Frédérich

2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Elahe Tajbakhsh ◽  
Tebit Emmanuel Kwenti ◽  
Parya Kheyri ◽  
Saeed Nezaratizade ◽  
David S. Lindsay ◽  
...  

Abstract Background Malaria still constitutes a major public health menace, especially in tropical and subtropical countries. Close to half a million people mainly children in Africa, die every year from the disease. With the rising resistance to frontline drugs (artemisinin-based combinations), there is a need to accelerate the discovery and development of newer anti-malarial drugs. A systematic review was conducted to identify the African medicinal plants with significant antiplasmodial and/or anti-malarial activity, toxicity, as wells as assessing the variation in their activity between study designs (in vitro and in vivo). Methods Key health-related databases including Google Scholar, PubMed, PubMed Central, and Science Direct were searched for relevant literature on the antiplasmodial and anti-malarial activities of African medicinal plants. Results In total, 200 research articles were identified, a majority of which were studies conducted in Nigeria. The selected research articles constituted 722 independent experiments evaluating 502 plant species. Of the 722 studies, 81.9%, 12.4%, and 5.5% were in vitro, in vivo, and combined in vitro and in vivo, respectively. The most frequently investigated plant species were Azadirachta indica, Zanthoxylum chalybeum, Picrilima nitida, and Nauclea latifolia meanwhile Fabaceae, Euphorbiaceae, Annonaceae, Rubiaceae, Rutaceae, Meliaceae, and Lamiaceae were the most frequently investigated plant families. Overall, 248 (34.3%), 241 (33.4%), and 233 (32.3%) of the studies reported very good, good, and moderate activity, respectively. Alchornea cordifolia, Flueggea virosa, Cryptolepis sanguinolenta, Zanthoxylum chalybeum, and Maytenus senegalensis gave consistently very good activity across the different studies. In all, only 31 (4.3%) of studies involved pure compounds and these had significantly (p = 0.044) higher antiplasmodial activity relative to crude extracts. Out of the 198 plant species tested for toxicity, 52 (26.3%) demonstrated some degree of toxicity, with toxicity most frequently reported with Azadirachta indica and Vernonia amygdalina. These species were equally the most frequently inactive plants reported. The leaves were the most frequently reported toxic part of plants used. Furthermore, toxicity was observed to decrease with increasing antiplasmodial activity. Conclusions Although there are many indigenous plants with considerable antiplasmodial and anti-malarial activity, the progress in the development of new anti-malarial drugs from African medicinal plants is still slothful, with only one clinical trial with Cochlospermum planchonii (Bixaceae) conducted to date. There is, therefore, the need to scale up anti-malarial drug discovery in the African region.


PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0252233
Author(s):  
Michael I. Dorrell ◽  
Heidi R. Kast-Woelbern ◽  
Ryan T. Botts ◽  
Stephen A. Bravo ◽  
Jacob R. Tremblay ◽  
...  

Tumor angiogenesis is critical for the growth and progression of cancer. As such, angiostasis is a treatment modality for cancer with potential utility for multiple types of cancer and fewer side effects. However, clinical success of angiostatic monotherapies has been moderate, at best, causing angiostatic treatments to lose their early luster. Previous studies demonstrated compensatory mechanisms that drive tumor vascularization despite the use of angiostatic monotherapies, as well as the potential for combination angiostatic therapies to overcome these compensatory mechanisms. We screened clinically approved angiostatics to identify specific combinations that confer potent inhibition of tumor-induced angiogenesis. We used a novel modification of the ex ovo chick chorioallantoic membrane (CAM) model that combined confocal and automated analyses to quantify tumor angiogenesis induced by glioblastoma tumor onplants. This model is advantageous due to its low cost and moderate throughput capabilities, while maintaining complex in vivo cellular interactions that are difficult to replicate in vitro. After screening multiple combinations, we determined that glioblastoma-induced angiogenesis was significantly reduced using a combination of bevacizumab (Avastin®) and temsirolimus (Torisel®) at doses below those where neither monotherapy demonstrated activity. These preliminary results were verified extensively, with this combination therapy effective even at concentrations further reduced 10-fold with a CI value of 2.42E-5, demonstrating high levels of synergy. Thus, combining bevacizumab and temsirolimus has great potential to increase the efficacy of angiostatic therapy and lower required dosing for improved clinical success and reduced side effects in glioblastoma patients.


2019 ◽  
Vol 12 ◽  
Author(s):  
Ruchi Khare ◽  
Neeraj Upmanyu ◽  
Megha Jha

Context: The medicinal plants have enormous pharmacological properties and having fewer side effects. Today there is increasing demand of medicinal plants as an anti-aging and anti-wrinkle agent. Objective: The aim of this study is to evaluate antioxidant, anti-aging and anti-wrinkle potential of Salvia officinalis. Materials and Methods: Salvia officinalis (Lamiaceae) is folk medicine of Asia and Latin America. Powdered crude drug 100 g were successively extracted in a soxhlet apparatus with petroleum ether (60-80ºC), chloroform and methanol. After successive solvents extraction methanolic extract was used for testing of antioxidant potential using DPPH assay. Further, antiaging potential of extract was investigated by inhibitory effect of various enzymatic estimations i.e. Col-I, Ela-I and Hya-I inhibitory assays on early aging human skin fibroblasts. Antiwrinkle potential of plant Salvia officinalis was done by using UV light induced photo aging model. Results: Phytochemical analysis showed the presence of glycosides, alkaloids flavonoids, and triterpenoids, saponins and Phenolic compounds in high level. Extract showed inhibitory concentration (IC50:24.65) and ascorbic acid the standard antioxidant showed inhibitory concentration (IC50:20.10). In enzymatic estimations assay, the Col-I, Ela-I and Hya-I of extract were assessed showing inhibitory concentration as Col-I (IC50:21.36), Ela-I (IC50:35.05) and Hya-I (IC50:23.44) respectively. Thus, MeOH extract of Salvia officinalis able to inhibit 50% of the activity of aging related enzymes Col-I, Ela-I and Hya-I. The wrinkle score of negative control i.e. UV treated group was 2.83±0.408 and MeOH extract of Salvia officinalis treated group is 1.83 ±0.753. Conclusion: This study concluded that MeOH extract of Salvia officinalis has confirmed the high antioxidant potential and In vitro and In vivo inhibitory potential of antiaging enzymes assessed, thus they could be used for further development of cosmetic products and nutraceuticals.


Electronics ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 1629
Author(s):  
Mauricio Guerra-Hernández ◽  
Gabriela Josefina Vidaña-Martínez ◽  
José S. Camacho-Juárez ◽  
Hugo Barragán-Villegas ◽  
José Enrique Calacuayo-Rojas ◽  
...  

A low-cost video laryngoscope (VDL) called Hybrid 1.0 was developed using smart devices for visualization. To test its performance, we compared it with a high-end VDL device, using both in vitro and in vivo studies. During the in vitro study, medical students without experience in airway intubation were randomly asked to intubate a mannequin with different degrees of difficulty (Cormack–Lehane scales) by using either the Hybrid 1.0 VDL (GI) or a conventional laryngoscope (GII). During the in vivo study, N = 60 endotracheal intubations were performed by resident and base physicians, divided into two groups; the first group intubated with the Hybrid 1.0 VDL (GI) while the second group used a VDL C-Mac shovel (GII). As performance indexes, both studies reported the number of successful intubations (correct capnography signal) and intubation time. For the in vitro testing, no statistically significant differences were found regarding the number of successful intubations, while statistically significant differences were found regarding the intubation times. During the in vivo tests, procedures were performed by residents and by base physicians, and no statistically significant differences were found. The provided results point out that the VDL proposed can be clinically useful and offers technical characteristics similar to other VDLs that currently exist on the market.


Sign in / Sign up

Export Citation Format

Share Document