scholarly journals Effects of Engineered Nanomaterials on Plants Growth: An Overview

2014 ◽  
Vol 2014 ◽  
pp. 1-28 ◽  
Author(s):  
Farzad Aslani ◽  
Samira Bagheri ◽  
Nurhidayatullaili Muhd Julkapli ◽  
Abdul Shukor Juraimi ◽  
Farahnaz Sadat Golestan Hashemi ◽  
...  

Rapid development and wide applications of nanotechnology brought about a significant increment on the number of engineered nanomaterials (ENs) inevitably entering our living system. Plants comprise of a very important living component of the terrestrial ecosystem. Studies on the influence of engineered nanomaterials (carbon and metal/metal oxides based) on plant growth indicated that in the excess content, engineered nanomaterials influences seed germination. It assessed the shoot-to-root ratio and the growth of the seedlings. From the toxicological studies to date, certain types of engineered nanomaterials can be toxic once they are not bound to a substrate or if they are freely circulating in living systems. It is assumed that the different types of engineered nanomaterials affect the different routes, behavior, and the capability of the plants. Furthermore, different, or even opposing conclusions, have been drawn from most studies on the interactions between engineered nanomaterials with plants. Therefore, this paper comprehensively reviews the studies on the different types of engineered nanomaterials and their interactions with different plant species, including the phytotoxicity, uptakes, and translocation of engineered nanomaterials by the plant at the whole plant and cellular level.

2021 ◽  
Vol 43 (1) ◽  
pp. 4-7
Author(s):  
Linda J. Johnston ◽  
Norma Gonzalez-Rojano ◽  
Kevin J. Wilkinson ◽  
Baoshan Xing

Abstract Nanotechnology has developed rapidly in the last two decades with significant effort focused on the development of nano-enabled materials with new or improved properties that offer solutions for current world challenges. The commercialization of products containing engineered nanomaterials (ENM) has progressed much more rapidly than the development of practical approaches to ensure their safe and sustainable use. The lack of adequate detection and characterization techniques and reproducible and validated methods for toxicological studies have been identified as major limitations. The rapid development of ENM of increasing complexity and diversity and concerns over the adequacy of existing regulations also contribute to safety concerns with these materials. The full potential of nanotechnology can only be realized when feasible, cost-effective strategies to ensure a safe-by-design approach, effective risk assessment approaches and appropriate regulatory guidelines are in place.


2020 ◽  
Vol 28 ◽  
Author(s):  
Hayati Filik ◽  
Asiye Aslıhan Avan ◽  
Mustafa Özyürek

: The prostate-specific antigen (PSA) has been considered a crucial serological marker for distinguishing prostate based cancer. This surveys recent progress in the construction of nanomaterial-based electrochemical immunosensors for a PSA. This review (from 2015 to 2020) reports the latest progress in PSA sensing based on the employ of different types of nanostructured materials. The most popular used nanostructured materials are metal, metal oxide, carbon-based nanomaterials, and their hybrid architectures utilized for distinct amplification protocols. In this review, the electrochemical immunosensors for prostate-specific antigen sensing are classified into three categories such as sandwich type@labeled, label free@nonlabeled and aptamer-based electrochemical immunosensor.


2021 ◽  
Vol 13 (14) ◽  
pp. 7971
Author(s):  
Xinfei Li ◽  
Baodong Cheng ◽  
Heng Xu

With the rapid development of the economy, corporate social responsibility (CSR) is receiving increasing attention from companies themselves, but also increasing attention from society as a whole. How to reasonably evaluate the performance of CSR is a current research hotspot. Existing corporate-social-responsibility evaluation methods mostly focus on the static evaluation of enterprises in the industry, and do not take the time factor into account, which cannot reflect the performance of long-term CSR. On this basis, this article proposes a time-based entropy method that can evaluate long-term changes in CSR. Studies have shown that the completion of CSR in a static state does not necessarily reflect the dynamic and increasing trend of CSR in the long term. Therefore, the assessment of CSR should consider both the static and dynamic aspects of a company. In addition, the research provides the focus of different types of forestry enterprises in fulfilling CSR in the long term, and provides a clearer information path for the standard identification and normative constraints of different types of forestry enterprises CSR.


Author(s):  
Santiago García

With the rapid development of smart phones, tablets and their operative systems, many positioning enabled sensors have been built into these devices. Users can now accurately fix their location according to the function of GPS receivers. For indoor environments, as in the case we are studying, WiFi based positioning is preferred to GPS due to the attenuation or obstruction of signals. This paper deals with the automatic classification of customers in a Sports Shop Center on the basis of their movements around the shop's premises. To achieve this goal, we start by collecting (x,y) coordinates from customers while they visit the store. Consequently, any costumer's path through the shop is formed by a list of coordinates, obtained with a frequency of one measurement per minute. Then, a guess about the full trajectory is constructed and a number of parameters about these trajectories is calculated before performing an Unsupervised Learning Clustering Process. As a result, we can identify several types of customers, and the dynamics of their behavior inside the shop. This information is of great value to the company, to be used both in the long term and also in short periods of time, monitoring the current state of the shop at any moment, identifying different types of situation appearing during restricted periods, or predicting customer flow conditions


2021 ◽  
Author(s):  
Thomas Drago

Diffuse large B-cell lymphoma (DLBCL) is the most common form of Non-Hodgkin Lymphoma (NHL) in adults. Affecting nearly 7 out of every 100,000 people in the United States annually, this hematogenous neoplasm is known for its aggressiveness and rapid development. Being the most common NHL, it has been divided into several subgroups based on pathogenesis and treatment methods. In particular, subtypes such as germinal center, activated B-cell-like, and primary mediastinal diffuse large B-cell lymphomas  have been divided by their uniqueness of pathology at the cellular level. Knowing the numerous cytokines, inflammatory markers, and other microcellular processes that these lymphomas disrupt can help target an effective therapeutic at the disease.


2016 ◽  
Vol 43 (5) ◽  
pp. 683-695 ◽  
Author(s):  
Chuanming Yu ◽  
Xiaoli Zhao ◽  
Lu An ◽  
Xia Lin

With the rapid development of the Internet, the computational analysis of social networks has grown to be a salient issue. Various research analyses social network topics, and a considerable amount of attention has been devoted to the issue of link prediction. Link prediction aims to predict the interactions that might occur between two entities in the network. To this aim, this study proposed a novel path and node combined approach and constructed a methodology for measuring node similarities. The method was illustrated with five real datasets obtained from different types of social networks. An extensive comparison of the proposed method against existing link prediction algorithms was performed to demonstrate that the path and node combined approach achieved much higher mean average precision (MAP) and area under the curve (AUC) values than those that only consider common nodes (e.g. Common Neighbours and Adamic/Adar) or paths (e.g. Random Walk with Restart and FriendLink). The results imply that two nodes are more likely to establish a link if they have more common neighbours of lower degrees. The weight of the path connecting two nodes is inversely proportional to the product of degrees of nodes on the pathway. The combination of node and topological features can substantially improve the performance of similarity-based link prediction, compared with node-dependent and path-dependent approaches. The experiments also demonstrate that the path-dependent approaches outperform the node-dependent appraoches. This indicates that topological features of networks may contribute more to improving performance than node features.


Nanomaterials ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 548 ◽  
Author(s):  
Frédéric Dumur ◽  
Eddy Dumas ◽  
Cédric R. Mayer

The great affinity of gold surface for numerous electron-donating groups has largely contributed to the rapid development of functionalized gold nanoparticles (Au-NPs). In the last years, a new subclass of nanocomposite has emerged, based on the association of inorganic molecular entities (IME) with Au-NPs. This highly extended and diversified subclass was promoted by the synergy between the intrinsic properties of the shell and the gold core. This review—divided into four main parts—focuses on an introductory section of the basic notions related to the stabilization of gold nanoparticles and defines in a second part the key role played by the functionalizing agent. Then, we present a wide range of inorganic molecular entities used to prepare these nanocomposites (NCs). In particular, we focus on four different types of inorganic systems, their topologies, and their current applications. Finally, the most recent applications are described before an overview of this new emerging field of research.


2018 ◽  
Vol 96 (1) ◽  
pp. 44-50 ◽  
Author(s):  
Nari Kim ◽  
Calvin C.H. Cheng ◽  
M. Cynthia Goh

A long polyelectrolyte chain collapses into a nano-sized particle upon the addition of counterions under appropriate solution conditions. This phenomenon forms the basis for a simple universal method for aqueous synthesis of ultra-small (<10 nm) metal, metal oxide, and other types of nanoparticles in the following manner: the counterion-collapsed polyelectrolyte chains are made stable by crosslinking, effectively trapping the counterions, which are subsequently chemically modified, to form metal nanoparticles via reduction or metal oxides nanoparticles via oxidation, within the collapsed polymer nanoparticle. This highly versatile platform methodology can be applied to almost any polyelectrolyte–counterion pair, making possible the rapid development of syntheses of different nanoparticles within the same chemical environment. Using poly(acrylic acid) as a model system, a methodology for the optimization of conditions for the polyelectrolyte collapse by various mono- and multi-valent metal cations is developed. The optimal counterion concentration did not correlate with ionic strength and metal ion valency and was highly variable from system to system. By monitoring the polyelectrolyte conformation using viscosity and turbidity measurements, the appropriate metal ion concentration for each nanoparticle system was determined.


2008 ◽  
Vol 91 (5) ◽  
pp. 1020-1024
Author(s):  
Raghavan Govindarajan ◽  
Dhirendra Pratap Singh ◽  
Ajay Kumar Singh Rawat

Abstract A rapid column high-performance liquid chromatographic-photodiode array method has been developed for the separation and identification of secondary metabolites, especially different types of phenols and furocoumarins, in a 35 min chromatographic run. The method has been optimized and validated for selectivity, precision, recovery, and robustness with the aim of application for standardization of selected herbal drugs. Almost all of the tested compounds had linearity of &gt;98, with relative standard deviation &lt;10 in terms of variation of retention time. Interday and intraday variability was &lt;5. The developed method has been successfully applied in identification and quantification of phenols and furocoumarins present in different plants, viz., Artemisia pallens (whole plant), Hibiscus rosa-sinensis DC (flower), Heracleum candicans DC (fruit), and Ficus carica Linn (bark). The results indicate that the method is rapid, accurate, and robust for the analysis of different types of phenols and furocoumarins and, hence, can be successfully used in the quality control and standardization of plant extracts and herbal drugs.


Sign in / Sign up

Export Citation Format

Share Document