Lactobacillus plantarum mitigates sexual-reproductive deficits by modulating insulin receptor expression in the hypothalamic-pituitary-testicular axis of hyperinsulinemic mice

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Edem Ekpenyong Edem ◽  
Blessing Uyo Nathaniel ◽  
Kate Eberechukwu Nebo ◽  
Abiola Oluwatosin Obisesan ◽  
Ayodeji Augustine Olabiyi ◽  
...  

Abstract Objectives Hyperinsulinemia increases the risk factor of diabetes and infertility at a manifold. Lactobacillus plantarum has several medical significances with limited reports. Hence, this study assessed the effect of L. plantarum on sexual-reproductive functions and distribution of insulin receptors in the hypothalamic-pituitary-testicular axis of hyperinsulinemic mice. Methods Forty male adult mice were divided into five groups as follows: control, high-fat diet (HFD) + streptozotocin (STZ), therapeutic, co-administration group type 1 (CO-AD) and probiotics. They were either simultaneously exposed to an HFD and L. plantarum treatment for 28 days with a dose of STZ injection to induce hyperinsulinemia on day 28 or treated with L. plantarum for 14 days, and following induction of hyperinsulinemia. Mice were subjected to a sexual behavioural test and thereafter sacrificed under euthanasia condition. Blood, brain and testes were collected for biochemical and immunohistochemical assays. Results Treatment with L. plantarum ameliorated reproductive hormones activity disruption, sexual behavioural defects, antioxidant imbalance, insulin dysregulation and lipid metabolism dysfunction following exposure to HFD + STZ when compared to the hyperinsulinemic untreated mice. Conclusions Taken together, data from this study reveal that L. plantarum abrogated hyperinsulinemia-induced male sexual and reproductive deficits by modulating antioxidant status, lipid metabolism and insulin signalling in the hypothalamic-pituitary-testicular axis of mice.

1996 ◽  
Vol 184 (2) ◽  
pp. 315-324 ◽  
Author(s):  
S W Lee ◽  
B A Sullenger

An RNA containing 2'-amino pyrimidines has been isolated using in vitro selection techniques that specifically and avidly (apparent Kd approximately 30 nM) binds a mouse monoclonal antibody called MA20. This 2'-amino-derivatized RNA is at least 10,000-fold more stable than unmodified RNA in serum, and can act as a decoy and block MA20 binding to its natural antigen, the human insulin receptor, on lymphocytes. Furthermore, this RNA decoy can inhibit MA20-mediated downmodulation of insulin receptor expression on human lymphocytes in culture by up to 90%. Surprisingly, the decoy RNA cross-reacts with autoantibodies from patients with extreme insulin resistance and can inhibit these antiinsulin receptor antibodies from downmodulating insulin receptor expression by up to 80% without impeding insulin binding to its receptor. These results suggest that in vitro-selected decoy RNAs may be able to specifically and selectively block oligoclonal autoimmune responses to self-antigens in patients with autoimmune diseases.


Biomedicines ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 321
Author(s):  
Susana Rovira-Llopis ◽  
Rubén Díaz-Rúa ◽  
Carmen Grau-del Valle ◽  
Francesca Iannantuoni ◽  
Zaida Abad-Jimenez ◽  
...  

Obese individuals without metabolic comorbidities are categorized as metabolically healthy obese (MHO). MicroRNAs (miRNAs) may be implicated in MHO. This cross-sectional study explores the link between circulating miRNAs and the main components of metabolic syndrome (MetS) in the context of obesity. We also examine oxidative stress biomarkers in MHO vs. metabolically unhealthy obesity (MUO). We analysed 3536 serum miRNAs in 20 middle-aged obese individuals: 10 MHO and 10 MUO. A total of 159 miRNAs were differentially expressed, of which, 72 miRNAs (45.2%) were higher and 87 miRNAs (54.7%) were lower in the MUO group. In addition, miRNAs related to insulin signalling and lipid metabolism pathways were upregulated in the MUO group. Among these miRNAs, hsa-miR-6796-5p and hsa-miR-4697-3p, which regulate oxidative stress, showed significant correlations with glucose, triglycerides, HbA1c and HDLc. Our results provide evidence of a pattern of differentially expressed miRNAs in obesity according to MetS, and identify those related to insulin resistance and lipid metabolism pathways.


Metabolism ◽  
2009 ◽  
Vol 58 (1) ◽  
pp. 109-119 ◽  
Author(s):  
Wei-Jia Kong ◽  
Hao Zhang ◽  
Dan-Qing Song ◽  
Rong Xue ◽  
Wei Zhao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document