scholarly journals Methodological approach for the estimation of a new velocity model for continental Ecuador

2017 ◽  
Vol 9 (1) ◽  
Author(s):  
Marco P. Luna ◽  
Alejandra Staller ◽  
Theofilos Toulkeridis ◽  
Humberto Parra

AbstractWe used 33 stations belonging of the Ecuador Continuous Monitoring GNSS Network (REGME) during the period 2008-2014, with aim to contribute with a methodological approach for the estimation of a new velocity model for Continental Ecuador. We used daily solutions to perform the analysis of GNSS time series, to obtain models of the series that best fit, taking into count the trend, seasonal variations and the type of noise. The sum of all these components represent the real-time series, and thus we can have a better estimation of the velocity parameter and its uncertainty.The velocities were calculated introducing the trend, seasonality and noise that were presented in each series into the overall model, which improved uncertainty by 12% and changed in magnitude up to 1.7 mm/yr and 2.5 mm/yr in the horizontal and vertical components, respectively, with respect to the initial velocities. The velocity field describes the crustal movement of the REGME stations in mainland Ecuador with uncertainty of 1 mm/yr and 2 mm/yr for the horizontal and vertical components, respectively. Finally, a velocity model has been developed using the kriging technique whose geostatistical approach has been based on the data to identify the spatial characteristics by examining the observations by peers. The mean square error (rms) of prediction obtained in this method is 1.78 mm/yr and 1.95 mm/yr in the east and north components, respectivaly. The vertical component could not be modeled due to its chaotic behavior.

Author(s):  
Aritra Sen ◽  
Shalmoli Dutta

Mortality is a continuous force of attrition, tending to reduce the population, a prime negative force in the balance of vital processes (Bhasin and Nag, 2004). Sample Registration System (SRS) serves as the only source of annual data on vital events on a full scale from 1969-70 in India. Few studies have examined the trends and patterns of mortality across time and regions in India (Preston and Bhat, 1984). The Under 5 Mortality Rates (U5MR) can be seen to decrease by more than half from 1970 to 2017 but in contrast little is known about the mortality patterns of the older children (5-9) and young adolescents (10-14), and not many studies have been done on their changing trends (Masquelier et al., 2018). Using the annual data for the 5-14 age, the trend of decline in the mortality patterns is studied from 1970 to 2013. The linear trend in the time series plot suggests analysis using time series models AR(p), MA(q), ARMA(p,q), Box- Jenkins ARIMA(p,d,q) and Random Walk with drift models to get the best fit to the trend of the data. The order of the time series models have been calculated by studying the ACF, PACF plots and the coefficients have been derived using the Yule-Walker equation matrix. An in-sample forecast of the years 2014-17 are taken. The Mean Squared Error (MSE) and the Mean Absolute Percentage Error (MAPE) as a measure of accuracy is used to determine the best fit model. ARIMA(3,1,1) produced lower values making it the best-fit model. Out-of-sample forecasting was done for 2018-2025. The forecast value shows that at the current trend, India would have 0.03 deaths per 1000 population in the 5-14 age group in 2025 showing that the government’s policies and health care interventions towards realization of the MDG4 goal is working positively.


2020 ◽  
Vol 12 (4) ◽  
pp. 594 ◽  
Author(s):  
Li ◽  
Huang ◽  
Chen ◽  
Dam ◽  
Fok ◽  
...  

Mass redistribution within the Earth system deforms the surface elastically. Loading theory allows us to predict loading induced displacement anywhere on the Earth’s surface using environmental loading models, e.g., Global Land Data Assimilation System. In addition, different publicly available loading products are available. However, there are differences among those products and the differences among the combinations of loading models cannot be ignored when precisions of better than 1 cm are required. Many scholars have applied these loading corrections to Global Navigation Satellite System (GNSS) time series from mainland China without considering or discussing the differences between the available models. Evaluating the effects of different loading products over this region is of paramount importance for accurately removing the loading signal. In this study, we investigate the performance of these different publicly available loading products on the scatter of GNSS time series from the Crustal Movement Observation Network of China. We concentrate on five different continental water storage loading models, six different non-tidal atmospheric loading models, and five different non-tidal oceanic loading models. We also investigate all the different combinations of loading products. The results show that the difference in RMS reduction can reach 20% in the vertical component depending on the loading correction applied. We then discuss the performance of different loading combinations and their effects on the noise characteristics of GNSS height time series and horizontal velocities. The results show that the loading products from NASA may be the best choice for corrections in mainland China. This conclusion could serve as an important reference for loading products users in this region.


2020 ◽  
Author(s):  
Rui Fernandes ◽  
Xiaoxing He ◽  
Jean-Philippe Montillet ◽  
Machiel Bos ◽  
Tim Melbourne ◽  
...  

<p>The analysis of daily position Global Navigation Satellite System (GNSS) time series provides information about various geophysical processes that are shaping the Earth’s crust. The goodness of fit of a trajectory model to these observations is an indication of our understanding of these phenomena. However, the fit also depends on the noise levels in the time series and in this study we investigate for 568 GNSS stations across North America the noise properties, its relation with the choice of trajectory model and if there exists a relationship with the type of monuments. We use the time series of two processing centers, namely the Central Washington University (CWU) and the New Mexico Tech (NMT), which process the data using two different complete processing strategies.</p><p>We demonstrate that mismodelling slow slip events within the geodetic time series increases the percentage of selecting the Random-Walk + Flicker + White noise (RW+FN+WN) as the optimal noise model for the horizontal components, especially when the Akaike Information Criterion is used. Furthermore, the analysis of the spatial distribution of the RW component (in the FN+WN+RW) around North America takes place at stations mostly localised around tectonic active areas such as the Cascadia subduction zone (Pacific Northwest) or the San Andreas fault (South California) and coastal areas. It is in these areas that most shallow and drilled-braced monuments are also located. Therefore, the comparison of monument type with observed noise level should also take into account its location which mostly has been neglected in previous studies. In addition, the General Gauss-Markov (GGM) with white noise (GGM+WN) is often selected for the Concrete Pier monument especially on the Up component which indicates that the very long time series are experiencing this flattening of the power spectrum at low frequency. Finally, the amplitude of the white noise is larger for the Roof-Top/Chimney (RTC) type than for the other monument’s types. With a varying seasonal signal computed using a Wiener filter, the results show that RTC monuments have larger values in the East and North components, whereas the deep-drilled brace monuments have larger values on the vertical component.</p>


2004 ◽  
Vol 155 (5) ◽  
pp. 142-145 ◽  
Author(s):  
Claudio Defila

The record-breaking heatwave of 2003 also had an impact on the vegetation in Switzerland. To examine its influences seven phenological late spring and summer phases were evaluated together with six phases in the autumn from a selection of stations. 30% of the 122 chosen phenological time series in late spring and summer phases set a new record (earliest arrival). The proportion of very early arrivals is very high and the mean deviation from the norm is between 10 and 20 days. The situation was less extreme in autumn, where 20% of the 103 time series chosen set a new record. The majority of the phenological arrivals were found in the class «normal» but the class«very early» is still well represented. The mean precocity lies between five and twenty days. As far as the leaf shedding of the beech is concerned, there was even a slight delay of around six days. The evaluation serves to show that the heatwave of 2003 strongly influenced the phenological events of summer and spring.


2009 ◽  
Vol 27 (1) ◽  
pp. 1-30 ◽  
Author(s):  
P. Prikryl ◽  
V. Rušin ◽  
M. Rybanský

Abstract. A sun-weather correlation, namely the link between solar magnetic sector boundary passage (SBP) by the Earth and upper-level tropospheric vorticity area index (VAI), that was found by Wilcox et al. (1974) and shown to be statistically significant by Hines and Halevy (1977) is revisited. A minimum in the VAI one day after SBP followed by an increase a few days later was observed. Using the ECMWF ERA-40 re-analysis dataset for the original period from 1963 to 1973 and extending it to 2002, we have verified what has become known as the "Wilcox effect" for the Northern as well as the Southern Hemisphere winters. The effect persists through years of high and low volcanic aerosol loading except for the Northern Hemisphere at 500 mb, when the VAI minimum is weak during the low aerosol years after 1973, particularly for sector boundaries associated with south-to-north reversals of the interplanetary magnetic field (IMF) BZ component. The "disappearance" of the Wilcox effect was found previously by Tinsley et al. (1994) who suggested that enhanced stratospheric volcanic aerosols and changes in air-earth current density are necessary conditions for the effect. The present results indicate that the Wilcox effect does not require high aerosol loading to be detected. The results are corroborated by a correlation with coronal holes where the fast solar wind originates. Ground-based measurements of the green coronal emission line (Fe XIV, 530.3 nm) are used in the superposed epoch analysis keyed by the times of sector boundary passage to show a one-to-one correspondence between the mean VAI variations and coronal holes. The VAI is modulated by high-speed solar wind streams with a delay of 1–2 days. The Fourier spectra of VAI time series show peaks at periods similar to those found in the solar corona and solar wind time series. In the modulation of VAI by solar wind the IMF BZ seems to control the phase of the Wilcox effect and the depth of the VAI minimum. The mean VAI response to SBP associated with the north-to-south reversal of BZ is leading by up to 2 days the mean VAI response to SBP associated with the south-to-north reversal of BZ. For the latter, less geoeffective events, the VAI minimum deepens (with the above exception of the Northern Hemisphere low-aerosol 500-mb VAI) and the VAI maximum is delayed. The phase shift between the mean VAI responses obtained for these two subsets of SBP events may explain the reduced amplitude of the overall Wilcox effect. In a companion paper, Prikryl et al. (2009) propose a new mechanism to explain the Wilcox effect, namely that solar-wind-generated auroral atmospheric gravity waves (AGWs) influence the growth of extratropical cyclones. It is also observed that severe extratropical storms, explosive cyclogenesis and significant sea level pressure deepenings of extratropical storms tend to occur within a few days of the arrival of high-speed solar wind. These observations are discussed in the context of the proposed AGW mechanism as well as the previously suggested atmospheric electrical current (AEC) model (Tinsley et al., 1994), which requires the presence of stratospheric aerosols for a significant (Wilcox) effect.


2019 ◽  
Vol 23 (10) ◽  
pp. 4323-4331 ◽  
Author(s):  
Wouter J. M. Knoben ◽  
Jim E. Freer ◽  
Ross A. Woods

Abstract. A traditional metric used in hydrology to summarize model performance is the Nash–Sutcliffe efficiency (NSE). Increasingly an alternative metric, the Kling–Gupta efficiency (KGE), is used instead. When NSE is used, NSE = 0 corresponds to using the mean flow as a benchmark predictor. The same reasoning is applied in various studies that use KGE as a metric: negative KGE values are viewed as bad model performance, and only positive values are seen as good model performance. Here we show that using the mean flow as a predictor does not result in KGE = 0, but instead KGE =1-√2≈-0.41. Thus, KGE values greater than −0.41 indicate that a model improves upon the mean flow benchmark – even if the model's KGE value is negative. NSE and KGE values cannot be directly compared, because their relationship is non-unique and depends in part on the coefficient of variation of the observed time series. Therefore, modellers who use the KGE metric should not let their understanding of NSE values guide them in interpreting KGE values and instead develop new understanding based on the constitutive parts of the KGE metric and the explicit use of benchmark values to compare KGE scores against. More generally, a strong case can be made for moving away from ad hoc use of aggregated efficiency metrics and towards a framework based on purpose-dependent evaluation metrics and benchmarks that allows for more robust model adequacy assessment.


Forecasting ◽  
2021 ◽  
Vol 3 (1) ◽  
pp. 39-55
Author(s):  
Rodgers Makwinja ◽  
Seyoum Mengistou ◽  
Emmanuel Kaunda ◽  
Tena Alemiew ◽  
Titus Bandulo Phiri ◽  
...  

Forecasting, using time series data, has become the most relevant and effective tool for fisheries stock assessment. Autoregressive integrated moving average (ARIMA) modeling has been commonly used to predict the general trend for fish landings with increased reliability and precision. In this paper, ARIMA models were applied to predict Lake Malombe annual fish landings and catch per unit effort (CPUE). The annual fish landings and CPUE trends were first observed and both were non-stationary. The first-order differencing was applied to transform the non-stationary data into stationary. Autocorrelation functions (AC), partial autocorrelation function (PAC), Akaike information criterion (AIC), Bayesian information criterion (BIC), square root of the mean square error (RMSE), the mean absolute error (MAE), percentage standard error of prediction (SEP), average relative variance (ARV), Gaussian maximum likelihood estimation (GMLE) algorithm, efficiency coefficient (E2), coefficient of determination (R2), and persistent index (PI) were estimated, which led to the identification and construction of ARIMA models, suitable in explaining the time series and forecasting. According to the measures of forecasting accuracy, the best forecasting models for fish landings and CPUE were ARIMA (0,1,1) and ARIMA (0,1,0). These models had the lowest values AIC, BIC, RMSE, MAE, SEP, ARV. The models further displayed the highest values of GMLE, PI, R2, and E2. The “auto. arima ()” command in R version 3.6.3 further displayed ARIMA (0,1,1) and ARIMA (0,1,0) as the best. The selected models satisfactorily forecasted the fish landings of 2725.243 metric tons and CPUE of 0.097 kg/h by 2024.


2021 ◽  
Vol 13 (11) ◽  
pp. 2173
Author(s):  
Kamil Kowalczyk ◽  
Katarzyna Pajak ◽  
Beata Wieczorek ◽  
Bartosz Naumowicz

The main aim of the article was to analyse the actual accuracy of determining the vertical movements of the Earth’s crust (VMEC) based on time series made of four measurement techniques: satellite altimetry (SA), tide gauges (TG), fixed GNSS stations and radar interferometry. A relatively new issue is the use of the persistent scatterer InSAR (PSInSAR) time series to determine VMEC. To compare the PSInSAR results with GNSS, an innovative procedure was developed: the workflow of determining the value of VMEC velocities in GNSS stations based on InSAR data. In our article, we have compiled 110 interferograms for ascending satellites and 111 interferograms for descending satellites along the European coast for each of the selected 27 GNSS stations, which is over 5000 interferograms. This allowed us to create time series of unprecedented time, very similar to the time resolution of time series from GNSS stations. As a result, we found that the obtained accuracies of the VMEC determined from the PSInSAR are similar to those obtained from the GNSS time series. We have shown that the VMEC around GNSS stations determined by other techniques are not the same.


2021 ◽  
Vol 13 (14) ◽  
pp. 2783
Author(s):  
Sorin Nistor ◽  
Norbert-Szabolcs Suba ◽  
Kamil Maciuk ◽  
Jacek Kudrys ◽  
Eduard Ilie Nastase ◽  
...  

This study evaluates the EUREF Permanent Network (EPN) station position time series of approximately 200 GNSS stations subject to the Repro 2 reprocessing campaign in order to characterize the dominant types of noise and amplitude and their impact on estimated velocity values and associated uncertainties. The visual inspection on how different noise model represents the analysed data was done using the power spectral density of the residuals and the estimated noise model and it is coherent with the calculated Allan deviation (ADEV)-white and flicker noise. The velocities resulted from the dominant noise model are compared to the velocity obtained by using the Median Interannual Difference Adjusted for Skewness (MIDAS). The results show that only 3 stations present a dominant random walk noise model compared to flicker and powerlaw noise model for the horizontal and vertical components. We concluded that the velocities for the horizontal and vertical component show similar values in the case of MIDAS and maximum likelihood estimation (MLE), but we also found that the associated uncertainties from MIDAS are higher compared to the uncertainties from MLE. Additionally, we concluded that there is a spatial correlation in noise amplitude, and also regarding the differences in velocity uncertainties for the Up component.


2020 ◽  
Vol 72 (1) ◽  
Author(s):  
Masayuki Kano ◽  
Shin’ichi Miyazaki ◽  
Yoichi Ishikawa ◽  
Kazuro Hirahara

Abstract Postseismic Global Navigation Satellite System (GNSS) time series followed by megathrust earthquakes can be interpreted as a result of afterslip on the plate interface, especially in its early phase. Afterslip is a stress release process accumulated by adjacent coseismic slip and can be considered a recovery process for future events during earthquake cycles. Spatio-temporal evolution of afterslip often triggers subsequent earthquakes through stress perturbation. Therefore, it is important to quantitatively capture the spatio-temporal evolution of afterslip and related postseismic crustal deformation and to predict their future evolution with a physics-based simulation. We developed an adjoint data assimilation method, which directly assimilates GNSS time series into a physics-based model to optimize the frictional parameters that control the slip behavior on the fault. The developed method was validated with synthetic data. Through the optimization of frictional parameters, the spatial distributions of afterslip could roughly (but not in detail) be reproduced if the observation noise was included. The optimization of frictional parameters reproduced not only the postseismic displacements used for the assimilation, but also improved the prediction skill of the following time series. Then, we applied the developed method to the observed GNSS time series for the first 15 days following the 2003 Tokachi-oki earthquake. The frictional parameters in the afterslip regions were optimized to A–B ~ O(10 kPa), A ~ O(100 kPa), and L ~ O(10 mm). A large afterslip is inferred on the shallower side of the coseismic slip area. The optimized frictional parameters quantitatively predicted the postseismic GNSS time series for the following 15 days. These characteristics can also be detected if the simulation variables can be simultaneously optimized. The developed data assimilation method, which can be directly applied to GNSS time series following megathrust earthquakes, is an effective quantitative evaluation method for assessing risks of subsequent earthquakes and for monitoring the recovery process of megathrust earthquakes.


Sign in / Sign up

Export Citation Format

Share Document