scholarly journals Concentrations of heavy metals in PM2.5 and health risk assessment around Chinese New Year in Dalian, China

2021 ◽  
Vol 13 (1) ◽  
pp. 1366-1374
Author(s):  
Xiao Liang Zhao ◽  
Gui Guo Jiang ◽  
Zi Ling Song ◽  
Bilal Touseef ◽  
Xue Ying Zhao ◽  
...  

Abstract Twelve samples of heavy metals were analyzed by using a 1108A-1 mid-current particle sampler in Dalian, Liaoning Province, for 31 days before and after the spring festival 2019. The results showed that the concentrations of heavy metals were decreased by more than 25% during the spring festival, which was probably due to the shutdown of the factories and the decrease in people’s travel. During the spring festival, the concentration of Ba was increased by 343.39% as compared to the concentration of Ba before the spring festival, which indicated that the fireworks had a great influence on the concentration of Ba. At the same time, this study also evaluated the health risk of heavy metals. For the heavy metals As, Cd, Co, Cr, and Ni, the lifetime cancer risk was found to be 2.13 × 10−4, 2.08 × 10−5, 8.64 × 10−7, 4.39 × 10−4 and 7.93 × 10−7, respectively. The lifetime cancer risk of As, Cd, and Cr exceeds the threshold range of cancer risk (10−6–10−4), indicating that they are carcinogenic to humans. Also, during the spring festival, the non-carcinogenic risk value of V exceeded the limit value of environmental protection agency (EPA), and the lifetime carcinogenic risk value of As, Cd, and Cr exceeded the threshold range of carcinogenic risk; hence, they need to be carefully monitored and controlled.

Author(s):  
I. B. Lawan ◽  
M. C. Zynab ◽  
I. M. Addullahi ◽  
M. Zakari ◽  
C. A. Joseph

Grain (soya beans, sorghum and maize) samples from Shani and Kwayakusar Local Government Areas, Borno State, Nigeria were collected in agricultural locations for the determination of heavy metals. The levels of heavy metals were determined using Atomic Absorption Spectroscopy (AA–6800 SHIMADZU). The levels of all the heavy metals studied in all the agricultural locations were higher in the post-harvest grains than in the pre-harvest grains. Results from the Incremental Lifetime Cancer Risk (ILCR) showed that, there was the possibility of developing cancer related diseases from the consumption of cereal samples from the study area with respect to the 10-4 tolerable limit. The results further suggested that the source of these heavy metals content in the grains samples might be largely as a result of the application of agrochemicals. Hence, consumption of the study cereals from the study area is of health risk with respect to Pb, Cd and As and should be given higher priority by relevant agencies.


Author(s):  
Mahdi Sadeghi ◽  
Mina Noroozi

Introduction: Contamination of water with heavy metals has turned into a health concern, particularly in the developing countries. In this study, concentration of heavy metals and associated carcinogenic and non- carcinogenic risk was investigated in water samples collected from Gonbad-e Kavus, a high-risk area for cancer. Materials and Methods: Samples were collected from Gorgan River, Golestan reservoir and wells around villages with high prevalence in 2018. Samples were analysed through inductively coupled plasma mass spectrometry. After determining the concentration of heavy metals in water samples from different sources, health risk assessment was carried out according to the Environmental Protection Agency.  Results: Arsenic in samples 6-9 was higher than 10 µg/L, calcium and magnesium in sample 5 was higher than 200 mg/L and 150 mg/L respectively, and sodium in all samples was higher than 50 mg/L.  According to the findings, these concentrations were higher than the maximum allowed limit in most water samples. Hazard quotient (HQ) in samples 8 and 9 were associated with arsenic and health risk in sample 1 was related to antimony. Furthermore, since all samples contained high amounts of lithium, water from this area better should not be consumed by children older than one year. Conclusion: Given the high rate of arsenic contamination, consumption of water in the study area could be health threatening for all individuals and is not recommended for children. This highlights the need for taking immediate actions to review the water treatment process and ensure safety of the drinking water in this area.


Author(s):  
A. I. Yaradua ◽  
A. J. Alhassan ◽  
A. Nasir ◽  
K. I. Matazu ◽  
A. Usman ◽  
...  

Bioaccumulation of seven heavy metals (Cr, Cd, Fe, Ni, Mn, Pb and Zn) in  Amaranthus leaf cultivated in Katsina state Nigeria were measured using atomic absorption spectrometer. The health risks to the local inhabitants from the consumption of the Amaranthus leaf were evaluated based on the Target Hazard Quotient. The possibility of cancer risks in the Amaranthus (L.) leaf through the intake of carcinogenic heavy metals was estimated using the Incremental Lifetime Cancer Risk. The target hazard quotient was (THQ)>1, indicating that the Amaranthus leaf cultivated may pose a non-carcinogenic risk for all the studied metals. Hazard index (HI) was low. The incremental cancer risk (ILCR) for Cd  violated the threshold risk limit (>10−4) and ILCR for Pb reached the moderate risk limit (>10−3) in all the studied samples in adults, While in children ILCR for both Pb in samples from Dabai, Daura, Funtua, Matazu and Zango and Cd for all samples have reached the moderate risk limit (>10−3), while the ILCR for Pb in samples from Birchi, Dutsinma, Kafur, Katsina and Malunfashi are beyond the moderate risk level (>10−2). The study suggests that consumption of Amaranthus leaf cultivated in Katsina may contribute to the population cancer burden.


2021 ◽  
Author(s):  
Shan Liu ◽  
Xihao Zhang ◽  
Changlin Zhan ◽  
Jiaquan Zhang ◽  
Jun Xu ◽  
...  

Abstract The potential health risk of heavy metals (HMs) in campus dust may threaten the health of thousands of students, teachers, and their families in Wuhan, the university cluster in Central China every day. In this research, the pollution characteristics and health risk with HMs was the first time presented in campus dust from the canteen, playground, dormitory, and school gate to date. The average HMs concentration in campus dusts ranked Pb (83.5 mg kg-1) > Cu (70.2 mg kg-1) > Zn (47.2 mg kg-1) > Cr (46.0 mg kg-1) > Ni (22.7 mg kg-1) > As (15.2 mg kg-1) > Cd (3.38 mg kg-1). The HMs would more likely to accumulate in dormitory dust and canteen dust. In the downtown area, Zn, As, and Cd had been preliminarily identified from fossil fuel combustion and natural geochemical processes. Cu and Pb would source from cooking and traffic transportation. Ni and Cr would likely reflect the contributions of natural soil weathering. Although, no significant non-carcinogenic health risks were found to students or teachers from campus dust. Their children would more likely to exposure health risks when eating in the canteen, playing on the playground, or walking around the school gate. While the incremental lifetime cancer risk values revealed respiratory intake of HMs does not pose a carcinogenic risk on the campus.


Author(s):  
I. B. Bwatanglang ◽  
P. Alexander ◽  
N. A. Timothy

In this study, the health risk caused by heavy metals exposure to communities along Mubi-Yola highways was evaluated. Samples from Mubi, Hong, Gombi, Song, and Gerei were collected and analyzed for Lead (Pb), Cadmium (Cd), Chromium (Cr), Zinc (Zn), Cupper (Cu), and Nickel (Ni) using Atomic Absorption Spectrophotometer (AAS). The mean concentrations of the metals used for the risk assessment were observed to fall in this order Zn>Pb>Ni>Cu>Cd>Cr. The non-carcinogenic risk based on the target hazard quotient (THQ) and human health index (HI) values for each exposure pathway and for each metal were observed to be less than (<) 1 which means, exposure to the heavy metals has no immediate risks for both the adults and children in the settlements. The lifetime cancer risk (CRI) for the metals for both the ingestion (CRIIng) and inhalation (CRIInh) exposure pathways were observed to pose no lifetime carcinogenic risk. The CRI for all the exposure pathways and for all age categories were <10-4. Similarly, the combine effect or total cancer risk (TCRI) for each exposure pathway show high probability for carcinogenic risk by ingestion route compared to exposure by inhalation. The order of exposure were observed to be adults<children. Though the CRI and TCRI results were observed to be within the acceptable range for developing cancer, the result  however suggest that children could be more susceptible to potential carcinogenic risk following continual exposure to heavy metals from vehicular activity. Indicating some concern about the expansion of unregulated settlements along heavy traffic highways.


2021 ◽  
Vol 1 (4) ◽  
pp. 298-319
Author(s):  
Buhari Samaila ◽  
Buhari Maidamma ◽  
Bilyaminu Usman ◽  
Aisha Ibrahim Jega ◽  
Shehu Alhassan Alhaji

The purpose of this review was to evaluate the hazard Index and Incremental life cancer risks associated with heavy metal contaminations of the soil for residents in the country. Many scientific articles have been accessible online in the Nigeria were evaluated for the estimation of [Hazard Index and Incremental Life Cancer Risk] for individual heavy metals. The heavy metals considered in this work are; [Lead (Pb), Copper (Cu), Iron (Fe), Manganese (Mn), Zinc (Zn), Chromium (Cr), and Cadmium (Cd)] The concentrations of these metals were obtained from the literature and modeled for, hazard index (HI), and carcinogenic risk (ILCR) via ingestion, inhalation, and dermal pathways for adults following the United State Environmental Protection Agency [USEPA] method. The hazard index for all the exposure pathways (ingestion, inhalation, and dermal contact) was found to be 21914, 1020.7, 580.8, 2.641, 0.272, 0.05165, 0.021, and 0.011[mg/kg/day], for Fe, Mn, Cr, Pb, Cu, Zn, Ni, and Cd respectively. United States EPA considered an overall hazard index value of 1.0 as an acceptable threshold below which no observable clinical effect was reported. In order of magnitude: Fe > Mn > Cr > Pb > Cu > Zn > Ni > Cd, Fe, Mn, and Cr have the highest Hazard Index in all the soil samples analyzed by different researchers in the country. In all the heavy metals reviewed, the Cd has the highest Incremental Life Cancer Risk followed by Cr, Pb, and Ni. This indicated that most of the areas are highly polluted with Cd, Cr, and Pb. Therefore, dwellers of the locations may likely be affected with cancer due to the ingestion, inhalation, and dermal contact with metals. The Overall results suggested that there is probable adverse health effects to an exposed population in all locations reviewed. Therefore, an effort will be made to prevent the transfer of heavy metals in the soil to the surrounding environment should be encouraged and soil remediation to further reduce the concentration of heavy metals needs to be effected immediately at root level.


Author(s):  
Chaiklieng ◽  
Suggaravetsiri ◽  
Autrup

Benzene is a human carcinogen presented in gasoline (1% by volume). It is also found in vehicle exhaust. The aim of this study was to assess the health risk of inhalation exposure to benzene among gasoline station workers. The ambient benzene concentration was measured by personal sampling from 150 gasoline station workers (137 fueling workers and 13 cashiers). Additional data of working characteristics were collected by interviews and on-site observations. All workers were non-smokers and passive smoking was limited. Risk assessment of inhalation exposure was determined using the United State Environmental Protection Agency (USEPA), and showed a high risk of adverse health effect (Hazard Quotients (HQ) >1) in 51.33% of workers. The cancer risk was increased from 1.35 × 10-8 to 1.52 × 10-4, and 70.67% of the workers had a lifetime cancer risk (>Inhalation Unit Risk (IUR): 2.2 × 10-6). A significantly higher risk was found in fueling workers compared to cashiers, and in workers at gasoline stations in inner-city zones (suburban and urban), compared to rural zones. All risk estimations were based upon a single measurement in an eight hour working period, which was assumed to be the average shift length for all working days in a year (250 days). The increased health risk suggests that there should be health surveillance for workers in order to protect them from exposure to benzene. In addition to benzene, the volatile organic compounds (VOCs) present in gasoline may influence health outcomes.


Author(s):  
Nor Ashikin Sopian ◽  
Juliana Jalaludin ◽  
Suhaili Abu Bakar ◽  
Titi Rahmawati Hamedon ◽  
Mohd Talib Latif

This study aimed to assess the association of exposure to particle-bound (PM2.5) polycyclic aromatic hydrocarbons (PAHs) with potential genotoxicity and cancer risk among children living near the petrochemical industry and comparative populations in Malaysia. PM2.5 samples were collected using a low-volume sampler for 24 h at three primary schools located within 5 km of the industrial area and three comparative schools more than 20 km away from any industrial activity. A gas chromatography–mass spectrometer was used to determine the analysis of 16 United States Environmental Protection Agency (USEPA) priority PAHs. A total of 205 children were randomly selected to assess the DNA damage in buccal cells, employing the comet assay. Total PAHs measured in exposed and comparative schools varied, respectively, from 61.60 to 64.64 ng m−3 and from 5.93 to 35.06 ng m−3. The PAH emission in exposed schools was contributed mainly by traffic and industrial emissions, dependent on the source apportionment. The 95th percentiles of the incremental lifetime cancer risk estimated using Monte Carlo simulation revealed that the inhalation risk for the exposed children and comparative populations was 2.22 × 10−6 and 2.95 × 10−7, respectively. The degree of DNA injury was substantially more severe among the exposed children relative to the comparative community. This study reveals that higher exposure to PAHs increases the risk of genotoxic effects and cancer among children.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11853
Author(s):  
Xingyong Zhang ◽  
Qixin Wu ◽  
Shilin Gao ◽  
Zhuhong Wang ◽  
Shouyang He

Heavy metals are released into the water system through various natural processes and anthropogenic activities, thus indirectly or directly endangering human health. The distribution, source, water quality and health risk assessment of dissolved heavy metals (V, Mn, Fe, Co, Ni, Zn, As, Mo, Sb) in major rivers in Wuhan were analyzed by correlation analysis (CA), principal component analysis (PCA), heavy metal pollution index (HPI), hazard index (HI) and carcinogenic risk (CR). The results showed that the spatial variability of heavy metal contents was pronounced. PCA and CA results indicated that natural sources controlled Mn, Fe, Co, Ni and Mo, and industrial emissions were the dominant factor for V, Zn and Sb, while As was mainly from the mixed input of urban and agricultural activities. According to the heavy metal pollution index (HPI, ranging from 23.74 to 184.0) analysis, it should be noted that As and Sb contribute most of the HPI values. The health risk assessment using HI and CR showed that V and Sb might have a potential non-carcinogenic risk and As might have a potential carcinogenic risk to adults and children in the study area (CR value exceeded target risk 10−4). At the same time, it was worth noting that As might have a potential non-carcinogenic risk for children around QLR (HI value exceeded the threshold value 1). The secular variation of As and Sb should be monitor in high-risk areas. The results of this study can provide important data for improving water resources management efficiency and heavy metal pollution prevention in Wuhan.


2018 ◽  
Vol 29 (1) ◽  
pp. 8-24 ◽  
Author(s):  
Uchechi Bliss Onyedikachi ◽  
Donatus Chuka Belonwu ◽  
Mattew Owhonda Wegwu

Abstract In view of ensuring healthy agricultural foods for human consumption, this study assessed the human health risk implicated in selected heavy metals in some commonly consumed vegetables, tubers, nuts and fruits grown around the quarry sites at Ishiagu, Ebonyi State, Nigeria. Samples from agriculture area of Umudike, Abia State, Nigeria, constituted the control. The concentration of Mn, Zn, Fe, Cu, Cd, and Pb, were determined using atomic absorption spectrometry. The potential non-carcinogenic health risk for consumers which included Estimated Daily Intake (EDI) and Target Hazard Quotients (THQ) for Pb, Fe, Mn, Zn, Cd and Cu while carcinogenic health risk using Cancer Slope Factors (CSF) was established for Cd and Pb. Relative abundance of heavy metals across the locations and all samples was in the order Fe > Mn > Zn > Pb > Cu > Cd. There was statistical significant effect of quarrying activities on the concentration of the heavy metals (Fe, Mn, Zn, Pb, Cu, Cd) at p < 0.05 level. Based on the observed bioconcentration factors, cassava showed more hyperaccumulation potential compared to other samples. Pumpkin and bitter leaf also could be used in remediation owing to their high bioaccumulation index for Pb and Zn. THQ obtained for Mn and Pb were >1 indicating that the residents at the quarry site may be exposed to potential non-carcinogenic health risk due to Mn and Pb intoxication. With respect to US EPA prescriptions, average carcinogenic risk values obtained for Pb and Cd in this study indicated a lifetime (70 years) probability of contracting cancer suggesting that they be placed for further consideration as chemicals of concern with respect to the assessed locals.


Sign in / Sign up

Export Citation Format

Share Document