scholarly journals Rare earth elements pilot studies of the baltic marine sands enriched in heavy minerals

2016 ◽  
Vol 32 (4) ◽  
pp. 5-28 ◽  
Author(s):  
Stanisław Z. Mikulski ◽  
Regina Kramarska ◽  
Grzegorz Zieliński

Abstract The carried out pilot work on the concentration of rare earth elements (REE) in the Baltic marine sands from the Odra and Słupsk Banks showed that in some places their accumulations are quite interesting in terms of the placer deposits and may be the subject of an interesting prospecting project. The results of ICP-MS and electron microprobe (CAMECA SX-100) investigation confirm the close relationship of REE concentration to heavy minerals content in the sediments of marine sands. It is indicated, in addition to monazite, as a primary mineral carrier of rare earth elements. The vast preponderance of light REE is noted in the samples of heavy mineral concentrates from the Odra and Słupsk Banks as well as in the beach sand sample from the Hel Peninsula. The highest concentrations are achieved mainly by cerium and almost two times less by lanthanum. The total REE in the most interesting considered samples range from c.a. 0.14% (trench on the beach) to 0.9% (heavy minerals concentrate from the Odra Bank). The high contents of REE are accompanied by a high concentration of Th (900-150 ppm). Neodymium (0.1-0.17% Nd), whose presence is associated with the presence of pyrochlore and Nb-rutile also appears in the heavy minerals concentrate samples. It is necessary to systematically identify heavy minerals resources in the Baltic sands. More detailed research should cover the prospective areas situated to the North-East from the documented placer fields of the Odra Bank, as well as tentatively identified areas of the Słupsk Bank and submarine paleo-slope of the Hel Peninsula.

Author(s):  
Vera Rostovtseva ◽  
Vera Rostovtseva ◽  
Igor Goncharenko ◽  
Igor Goncharenko ◽  
Dmitrii Khlebnikov ◽  
...  

Sea radiance coefficient, defined as the ratio of the sunlight reflected by the water bulk to the sunlight illuminating the water surface, is one of the most informative optical characteristics of the seawater that can be obtained by passive remote sensing. We got the sea radiance coefficient spectra by processing the data obtained in measurements from board a moving ship. Using sea radiance coefficient optical spectra it is possible to estimate water constituents concentration and their distribution over the aquatory of interest. However, thus obtained sea radiance coefficient spectra are strongly affected by weather and measurement conditions and needs some calibration. It was shown that practically all the spectra of sea radiance coefficient have some generic peculiarities regardless of the type of sea waters. These peculiarities can be explained by the spectrum of pure sea water absorption. Taking this into account a new calibration method was developed. The measurements were carried out with the portative spectroradiometers from board a ship in the five different seas: at the north-east coast of the Black Sea, in the Gdansk Bay of the Baltic Sea, in the west part of the Aral Sea, in the Kara Sea with the Ob’ Bay and in the Philippine Sea at the coast of Taiwan. The new method of calibration was applied to the obtained spectra of the sea radiance coefficient that enabled us to get the corresponding absorption spectra and estimate the water constituents concentration in every region. The obtained concentration estimates were compared to the values obtained in water samples taken during the same measurement cycle and available data from other investigations. The revealed peculiarities of the sea radiance coefficient spectra in the aquatories under exploration were compared to the corresponding water content and some characteristic features were discussed.


2021 ◽  
Vol 9 ◽  
Author(s):  
Jie Chen ◽  
Jianjun Zou ◽  
Aimei Zhu ◽  
Xuefa Shi ◽  
Dirk Nürnberg ◽  
...  

Investigating the composition and distribution of pelagic marine sediments is fundamental in the field of marine sedimentology. The spatial distributions of surface sediment are unclear due to limited investigation along the Emperor Seamount Chain of the North Pacific. In this study, a suite of sedimentological and geochemical proxies were analyzed, including the sediment grain size, organic carbon, CaCO3, major and rare earth elements of 50 surface sediment samples from the Emperor Seamount Chain, spanning from ∼33°N to ∼52°N. On the basis of sedimentary components, we divide them into three Zones (I, II, and III) spatially with distinct features. Sediments in Zone I (∼33°N–44°N) and Zone III (49.8°N–53°N) are dominated by clayey silt, and mainly consist of sand and silty sand in Zone II. The mean grain size of the sortable silt shows that the hydrodynamic condition in the study area is significantly stronger than that of the abyssal plain, especially at the water depth of 1,000–2,500 m. The CaCO3 contents in sediments above 4,000 m range from 20 to 84% but decrease sharply to less than 1.5% below 4,000 m, confirming that the water depth of 4,000 m is the carbonate compensation depth of the study area. Strong positive correlations between Al2O3 and Fe2O3, TiO2, MgO, and K2O (R > 0.9) in the bulk sediments indicate pronounced contributions of terrigenous materials from surrounding continent mass to the study area. Furthermore, the eolian dust makes contributions to the composition of bulk sediments as confirmed by rare earth elements. There is no significant correlation between grain size and major and minor elements, which indicates that the sedimentary grain size does not exert important effects on terrigenous components. There is significant negative δCe and positive δEu anomalies at all stations. The negative Ce anomaly mainly exists in carbonate-rich sediments, inheriting the signal of seawater. The positive Eu anomaly indicates widespread volcanism contributions to the study area from active volcanic islands arcs around the North Pacific. The relative contributions of terrestrial, volcanic, and biogenic materials vary with latitude and water depth in the study area.


2020 ◽  
Vol 86 ◽  
pp. 65-93 ◽  
Author(s):  
Kerkko Nordqvist ◽  
Volker Heyd

The Fatyanovo Culture, together with its eastern twin, the Balanovo Culture, forms part of the pan-European Corded Ware Complex. Within that complex, it represents its eastern expansion to the catchment of the Upper and Middle Volga River in the European part of Russia. Its immediate roots are to be found in the southern Baltic States, Belarus, and northern Ukraine (the Baltic and Middle-Dnepr Corded Ware Cultures), from where moving people spread the culture further east along the river valleys of the forested flatlands. By doing so, they introduced animal husbandry to these regions. Fatyanovo Culture is predominately recognised through its material culture imbedded in its mortuary practices. Most aspects of every-day life remain unknown. The lack of an adequate absolute chronological framework has thus far prevented the verification of its internal cultural dynamics while overall interaction proposed also on typo-stratigraphical grounds suggests a contemporaneity with other representations of the Corded Ware Complex in Europe. Fatyanovo Culture is formed by the reverse movement to the (north-)east of the Corded Ware Complex, itself established in the aftermath of the westbound spread of Yamnaya populations from the steppes. It thus represents an important link between west and east, pastoralists and last hunter-gatherers, and the 3rd and the 2nd millennia bc. Through its descendants (including Abashevo, Sintashta, and Andronovo Cultures) it becomes a key component in the development of the wider cultural landscape of Bronze Age Eurasia.


2020 ◽  
Vol 57 (5) ◽  
pp. 630-646
Author(s):  
Xi-Tao Nie ◽  
Jing-Gui Sun ◽  
Feng-Yue Sun ◽  
Bi-Le Li ◽  
Ya-Jing Zhang ◽  
...  

The Shimadong porphyry Mo deposit is located in eastern Yanbian, in the eastern part of the north margin of the North China craton, northeastern China. Here, we present the whole-rock major and trace elements, zircon U–Pb and Hf isotope data, and molybdenite Re–Os data for the Shimadong deposit. The porphyry was emplaced at 163.7 ± 0.9 Ma and the mineralization at 163.1 ± 0.9 Ma, suggesting that the mineralization was associated with the emplacement of the Shimadong porphyritic monzogranite. The porphyritic monzogranite had high SiO2 (70.09–70.55 wt%) and K2O + Na2O (7.98–8.27 wt%) contents and low MgO (0.51–0.53 wt%), TFeO (2.4–2.47 wt%), CaO (2.19–2.26 wt%), and K2O/Na2O (0.8–0.82) contents. The porphyry was rich in large ion lithophile elements Rb, Ba, K, and Sr, depleted in high-field-strength elements Y, Nb, Ta, P, and Ti, without significant Eu anomaly (δEu = 0.86–1.00), and depleted in heavy rare earth elements with light rare earth elements/heavy rare earth elements = 18.25–20.72 and (La/Yb)N = 27.10–34.67. These features are similar to those of adakitic rocks derived from a thickened lower crust. Zircon εHf(t) values for the porphyritic monzogranite ranged from –19.2 to 6.3, and the two-stage Hf model ages (TDM2) were 2421–811 Ma. These data indicate that the primary magma of the Shimadong porphyritic monzogranite was mainly derived from partial melting of the thickened lower crust consisting of juvenile crust and pre-existing crust. Combined with the results of previous studies, our data suggest that the Shimadong porphyry Mo deposit was emplaced along an active continental margin related to the westward subduction of the paleo-Pacific Plate.


2019 ◽  
Vol 489 (1) ◽  
pp. 261-274 ◽  
Author(s):  
Abhijit Bhattacharya

AbstractIn the Late Archean north-trending Closepet pluton, trains of euhedral K-feldspar phenocrysts and matrix-supported idiomorphic K-feldspar crystals in the central part of the pluton define oblique-to-pluton margin steep-dipping east/ENE-trending magmatic fabrics. The magmatic fabric is defined by phenocryst-rich and phenocryst-poor layers, with the euhedral porphyries continuous across the layers. The fabrics are near-orthogonal to the gently-dipping gneissic layers in the host gneisses. The fabrics curve adjacent to locally-developed north/NNE-trending melt-hosted dislocations parallel to the axial planes of horizontal/gently-plunging north-trending upright folds in the host gneisses. In the pluton interior, both fabrics in the intrusives formed at supra-solidus conditions, although the volume fraction of melts diminished drastically due to cooling/melt expulsion. At the pluton margin, the north-trending fabric is penetrative and post-dates magma solidification. Within the pluton, the major element oxides, rare earth elements, anorthite contents in plagioclase, and (Mg/Fe + Mg) ratios in biotite decrease with increasing SiO2 from phenocryst-rich (up to 75% by volume) granodiorite to phenocryst-poor (<15 vol%) granite that broadly correspond to minimum melt composition. The chemical-mineralogical variations in the pluton is attributed to deformation-driven ascent of magma with heterogeneous crystal content, ascending at variable velocities (highest in crystal-poor magma) along oblique-to-pluton margin east/ENE-trending extensional fractures induced by dextral shearing.


Sign in / Sign up

Export Citation Format

Share Document