scholarly journals Eco-friendly synthesis of AuNPs for cutaneous wound-healing applications in nursing care after surgery

2020 ◽  
Vol 9 (1) ◽  
pp. 366-374
Author(s):  
Shijun Nie ◽  
Ran Wei ◽  
Haoxin Zhou ◽  
Liang Zhang ◽  
Zhinan Chen ◽  
...  

AbstractThe current work described the preparation of gold nanoparticles (AuNPs) using the plant extract of Impatiens balsamina followed by evaluating their wound-healing potential. The formed NPs were studied by performing UV-visible spectroscopy, Fourier transform infrared, transmission electron microscopy and X-ray diffraction. Further, both the thermal and excision wound models were used to understand the wound-healing ability of AuNPs. It is exhibited that at a concentration of 20 mg, the AuNPs exhibited substantial decrease in excision wound within 8 days. The obtained wound-healing results indicated that the AuNPs prepared from the leaf extract of I. balsamina exhibited active wound-healing potential when related to traditional drugs; hence, AuNPs could have future applications in the development of dressing materials in nursing care for wound healing after surgery.

2018 ◽  
Vol 32 (19) ◽  
pp. 1840044
Author(s):  
Aditya Dalal ◽  
Animesh Mandal ◽  
Shubhada Adhi ◽  
Kiran Adhi

Aluminum (0.5 at.%)-doped ZnO (AZO) thin films were deposited by pulsed laser deposition technique (PLD) in oxygen ambient of 10[Formula: see text] Torr. The deposited thin films were characterized by x-ray diffraction (XRD), photoluminescence (PL), Raman spectroscopy and uv–visible spectroscopy (UV–vis). Next, graphene oxide (GO) was synthesized by Hummers method and was characterized by XRD, UV–vis spectroscopy, Raman spectroscopy and transmission electron microscopy (TEM). Thereafter, GO solution was drop-casted on AZO thin films. These films were then characterized by Raman Spectroscopy, UV–vis spectroscopy and PL. Attempt is being made to comprehend the modifications in properties brought about by integration.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Pham Van Viet ◽  
Cao Minh Thi ◽  
Le Van Hieu

Tin oxide nanoparticles (SnO2NPs) were prepared at low temperature by hydrothermal method. Synthesized SnO2NPs were confirmedviacharacterization techniques such as UV-visible spectroscopy (UV-vis), X-ray diffraction (XRD), and Transmission Electron Microscope (TEM). The synthesized nanoparticles were in the size of 3 nm and they have high photocatalytic activity. The result showed that SnO2NPs degraded 88.88% MB solution after 30 minutes of UV illumination and reached 90.0% for 120 minutes (2 hours) of UV illumination. Moreover, they degraded 79.26% MB solution after 90 minutes (1.5 hours) under assisted sunlight illumination.


2016 ◽  
Vol 5 (6) ◽  
Author(s):  
Brajesh Kumar ◽  
Kumari Smita ◽  
Luis Cumbal

AbstractThe present report summarizes an eco-friendly approach for the biosynthesis of silver nanoparticles (AgNPs) using the leaf extract of lavender. Initially, the synthesis of AgNPs was visually observed by the appearance of a wine red color. The optical property, morphology, and structure of as-synthesized AgNPs were characterized by UV-visible spectroscopy, dynamic light scattering, transmission electron microscopy, and X-ray diffraction analyses. All characterization data revealed the formation of crystalline and spherical AgNPs (Ag/Ag


2011 ◽  
Vol 109 ◽  
pp. 174-177 ◽  
Author(s):  
Yu Li Shi ◽  
Qi Zhou ◽  
Li Yun Lv ◽  
Wang Hong

A facile method for the synthesis of silver nanoparticles (NPs) has been developed by using sodium phosphate (Na3PO4) as stabilizing agents and glucose the reducing agent, respectively. The obtained silver NPs have been characterized by X-ray diffraction (XRD), UV-visible spectroscopy (UV-vis) and transmission electron microscopy (TEM). It was found that in the presence of sodium phosphate, silver NPs with different morphologies and sizes were obtained. The formation mechanism of diverse silver NPs was studied preliminarily.


2011 ◽  
Vol 356-360 ◽  
pp. 524-528 ◽  
Author(s):  
Chun Ling Yu ◽  
Rui Xue Wu ◽  
Ying Huan Fu ◽  
Xiao Li Dong ◽  
Hong Chao Ma

A polyaniline supported titanium dioxide photocatalyst was prepared by an impregnation-hydrothermal process and characterized by powder X-ray diffraction, transmission electron microscopy and UV-visible spectroscopy. It was found that the TiO2 nanoparticles were well dispersed on the surface of the polyaniline and the photocatalyst has a stronger absorption compared with that of pure TiO2 over the whole of the visible spectrum. The photocatalyst exhibited higher photocatalytic activity than pure TiO2 for the photodegradation of solutions of the anthraquinone dye, reactive brilliant blue KN-R, under visible light irradiation.


2020 ◽  
Vol 10 (11) ◽  
pp. 1795-1801
Author(s):  
Hai-Yan Wang ◽  
Zhang-You Wu

In this study, Au?SiO2 materials were synthesized by a simple biogenic approach using ultra-small Au nanoparticles (NPs) loaded on mesoporous SiO2 NPs. The functional groups, crystalline behavior, morphological structure, and elemental compositions of synthesized nanomaterials were characterized and confirmed by various techniques such as ultraviolet-visible (UV-Vis), X-ray diffraction (XRD) analysis, Fourier-transform infrared (FTIR) spectroscopy, transmission electron microscope (TEM) with energy dispersive X-ray (EDX) mapping, Zeta potential, and dynamic light scattering (DLS) analysis. The cell viability results also indicated that the nano Au NPs loaded on mesoporous SiO2 NPs exhibited highly efficient biocompatibility and low toxicity. The wound healing rate of mesoporous SiO2 and Au?SiO2 NPs were 82% and 96%, respectively, at the end of 14 days, which were higher than that of the control samples. These results strongly support the possibility of using these Au particles loaded on mesoporous SiO2 NPs as a promising wound healing agent for nursing care during femoral fracture surgery.


2013 ◽  
Vol 10 (82) ◽  
pp. 20121040 ◽  
Author(s):  
Valentina Aina ◽  
Giuseppina Cerrato ◽  
Gianmario Martra ◽  
Loredana Bergandi ◽  
Costanzo Costamagna ◽  
...  

A new melted bioactive system containing gold nanoparticles (AuNPs) was prepared exploiting a post-synthesis thermal treatment that allows one to modify crystal phases and nature, shape and distribution of the gold species in the glass-ceramic matrix as evidenced by UV–visible spectroscopy, transmission electron microscopy and powder X-ray diffraction analysis. In human MG-63 osteoblasts the presence of Au n + species caused an increase of lactate dehydrogenase leakage and malonyldialdehyde production, whereas Hench's Bioglass HAu-600-17 containing only AuNPs did not cause any effect. In addition, HAu-600-17 caused in vitro hydroxyapatite formation and an increase of specific surface area with a controlled release of gold species; this material is then suitable to be used as a model system for the controlled delivery of nanoparticles.


Author(s):  
B. Anandh ◽  
A. Muthuvel ◽  
M. Emayavaramban

The present investigation demonstrates the formation of silver nanoparticles by the reduction of the aqueous silver metal ions during exposure to the Lagenaria siceraria leaf extract. The synthesized AgNPs have characterized by UV-visible spectroscopy, X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR) techniques. AgNPs formation has screened by UV-visible spectroscopy through colour conversion due to surface plasma resonance band at 427 nm. X-ray diffraction (XRD) confirmed that the resulting AgNPs are highly crystalline and the structure is face centered cubic (fcc). FT-IR spectrum indicates the presence of different functional groups present in the biomolecules capping the nanoparticles. Further, inhibitory activity of AgNPs and leaf extract were tested against human pathogens like gram-pastive (Staphylococcus aureus, Bacillus subtilis), gram-negative (Escherichia coli and Pseudomonas aeruginosa). The results indicated that the AgNPs showed moderate inhibitory actions against human pathogens than Lagenaria siceraria leaf extract, demonstrating its antimicrobial value against pathogenic diseases


2015 ◽  
Vol 1132 ◽  
pp. 19-35
Author(s):  
S.O. Dozie-Nwachukwu ◽  
J.D. Obayemi ◽  
Y. Danyo ◽  
G. Etuk-Udo ◽  
N. Anuku ◽  
...  

This paper presents the biosynthesis of gold nanoparticles from the bacteria, Serratia marcescens.The intra-and extra-cellular synthesis of gold nanoparticles is shown to occur over a range of pH and incubation times in cell-free exracts and biomass ofserratia marcescensthat were reacted with 2.5mM Tetrachloroauric acid (HAuCl4). The formation of gold nanoparticles was identified initially via color changes from yellow auro-chloride to shades of red or purple in gold nanoparticle solutions. UV-Visible spectroscopy (UV-Vis), Transmission Electron Microscopy (TEM) and Energy Dispersive X-ray spectroscopy (EDS), Helium Ion Microscopy (HIM) and Dynamic Light Scattering (DLS) were also used to characterize gold nanoparticles produced within a range of pH conditions. The results show clearly that the production of gold nanoparticles from cell-free extracts require shorter times than the production of gold nanoparticles from the biomass.


Crystals ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 424 ◽  
Author(s):  
Jia-Le Li ◽  
Wei-Dong Li ◽  
Zi-Wei He ◽  
Shuai-Shuai Han ◽  
Shui-Sheng Chen

A new compound, namely, [Zn(L)2]n (1) was obtained by the reaction of 2-methyl-4-(4H-1,2,4-triazol-4-yl) benzoic acid (HL) with ZnSO4·7H2O, and the compound was characterized by single-crystal X-ray diffraction, infrared spectroscopy, elemental analysis, powder X-ray diffraction (PXRD), and thermogravimetric analysis. The linear HL ligands were deprotonated to be L− anions and act as two-connectors to link Zn2+ to form a two-dimensional (2D) lay structure with (4, 4) topology. The large vacancy of 2D framework allows another layer structure to interpenetrate, resulting in the formation of 2D + 2D → 2D parallel interpenetration in 1. The weak interactions, such as hydrogen bonding and π–π stacking interactions, connect the adjacent 2D layers into a three-dimensional (3D) coordination polymer. The solid-state UV-visible spectroscopy and luminescent property have also been studied.


Sign in / Sign up

Export Citation Format

Share Document