Investigation of Compound Layer Structures after Nitriding and Nitrocarburizing of Quenched and Tempered Steels

2021 ◽  
Vol 76 (3) ◽  
pp. 219-236
Author(s):  
M. Sommer ◽  
S. Hoja ◽  
M. Steinbacher ◽  
R. Fechte-Heinen

Abstract A compound layer is formed by ingress of nitrogen from an external nitrogen source into the surface layer and the formation of nitrides when the solubility of nitrogen in the bulk material is exceeded. In the surface layer, where the nitrogen concentration is at its maximum level, the nitrides form a closed layer. The compound layer continues to contain alloy nitrides which have formed from the carbides and other precipitates from the bulk material. The properties of the compound layer have a decisive influence on the wear and fatigue behavior of the loaded surfaces. The current investigations deal with the extensive characterization of compound layers that have been produced in heat treatment processes with the aim of producing stress-resistant nitriding layers. The commonly used nitriding and quench and temper (Q&T) steels 31CrMoV9 and 42CrMo4 served as examination material. The structure of the compound layers was varied within the nitriding trials regarding the phase composition, porosity and layer thicknesses. The phase composition of the compound layers was determined by special etching, scanning electron microscopy (SEM), X-ray diffraction and GDOES.

2007 ◽  
Vol 561-565 ◽  
pp. 2477-2480 ◽  
Author(s):  
Masato Tsujikawa ◽  
S. Noguchi ◽  
N. Yamauchi ◽  
N. Ueda ◽  
T. Sone ◽  
...  

Surface layer hardness and concentration profiles of austenitic stainless steels after plasma carburizing and /or nitriding at 673 K were investigated. Carbon and nitrogen concentration were measured by glow discharge optical emission spectrometry (GDOES) and carbides or nitrides were detected by x-ray diffraction analysis (XRD) and TEM. The state of carbon at the treated surface was investigated by Raman spectroscopy. Separation of carburized layer and nitrided layer was observed in a simultaneous carburizing and nitriding plasma treatment.


Author(s):  
Sara Bagherifard ◽  
Marco Giglio ◽  
Lorenzo Giudici ◽  
Mario Guagliano

Shot peening (SP) is a mechanical surface treatment commonly performed to improve the fatigue behavior through creation of compressive residual stresses close to surface and work hardening of the surface material. Notwithstanding wide application of shot peening in the industrial environment, the determination of optimal peening condition for Ti alloys is still more an art than a science, taking into account that there is not a well established method to choose the process parameters in order to enhance the fatigue behavior. In this paper a comprehensive numerical and experimental study is presented aimed at finding the optimized peening conditions based on characterization of surface layer of material after multiple impacts. The numerical simulations provide a quantitative description of shot peening effects in terms of residual stress field and thickness of work-hardened surface layer. Comparison with numerical results, obtained by means of X-ray diffraction (XRD), shows a very good correspondence. Finally the results of experimental bending fatigue tests, performed on shot peened specimens by means of Rumul Cracktronics machine, confirm that shot peening significantly increases the fatigue strength of the considered Titanium alloy.


Author(s):  
V. N. Filimonenko ◽  
M. H. Richman ◽  
J. Gurland

The high temperatures and pressures that are found in a spark gap during electrical discharging lead to a sharp phase transition and structural transformation in the surface layer of cemented carbides containing WC and cobalt. By means of X-ray diffraction both W2C and a high-temperature monocarbide of tungsten (face-centered cubic) were detected after electro-erosion. The W2C forms as a result of the peritectic reaction, WC → W2C+C. The existence and amount of the phases depend on both the energy of the electro-spark discharge and the cobalt content. In the case of a low-energy discharge (i.e. C=0.01μF, V = 300v), WC(f.c.c.) is generally formed in the surface layer. However, at high energies, (e.g. C=30μF, V = 300v), W2C is formed at the surface in preference to the monocarbide. The phase transformations in the surface layer are retarded by the presence of larger percentages of cobalt.Metallographic examination of the electro-eroded surfaces of cemented carbides was carried out on samples with 5-30% cobalt content. The specimens were first metallographically polished using diamond paste and standard procedures and then subjected to various electrical discharges on a Servomet spark machining device. The samples were then repolished and etched in a 3% NH4OH electrolyte at -0.5 amp/cm2. Two stage plastic-carbon replicas were then made and shadowed with chromium at 27°.


2020 ◽  
Vol 86 (6) ◽  
pp. 29-35
Author(s):  
V. P. Sirotinkin ◽  
O. V. Baranov ◽  
A. Yu. Fedotov ◽  
S. M. Barinov

The results of studying the phase composition of advanced calcium phosphates Ca10(PO4)6(OH)2, β-Ca3(PO4)2, α-Ca3(PO4)2, CaHPO4 · 2H2O, Ca8(HPO4)2(PO4)4 · 5H2O using an x-ray diffractometer with a curved position-sensitive detector are presented. Optimal experimental conditions (angular positions of the x-ray tube and detector, size of the slits, exposure time) were determined with allowance for possible formation of the impurity phases during synthesis. The construction features of diffractometers with a position-sensitive detector affecting the profile characteristics of x-ray diffraction peaks are considered. The composition for calibration of the diffractometer (a mixture of sodium acetate and yttrium oxide) was determined. Theoretical x-ray diffraction patterns for corresponding calcium phosphates are constructed on the basis of the literature data. These x-ray diffraction patterns were used to determine the phase composition of the advanced calcium phosphates. The features of advanced calcium phosphates, which should be taken into account during the phase analysis, are indicated. The powder of high-temperature form of tricalcium phosphate strongly adsorbs water from the environment. A strong texture is observed on the x-ray diffraction spectra of dicalcium phosphate dihydrate. A rather specific x-ray diffraction pattern of octacalcium phosphate pentahydrate revealed the only one strong peak at small angles. In all cases, significant deviations are observed for the recorded angular positions and relative intensity of the diffraction peaks. The results of the study of experimentally obtained mixtures of calcium phosphate are presented. It is shown that the graphic comparison of experimental x-ray diffraction spectra and pre-recorded spectra of the reference calcium phosphates and possible impurity phases is the most effective method. In this case, there is no need for calibration. When using this method, the total time for analysis of one sample is no more than 10 min.


2019 ◽  
Vol 484 (1) ◽  
pp. 41-43
Author(s):  
E. A. Malinina ◽  
V. K. Skachkova ◽  
I. V. Kozerozhets ◽  
V. V. Avdeeva ◽  
L. V. Goeva ◽  
...  

The method of nanoscaled sodium dodecahydro-closo-dodecaborate Na2[B12H12] synthesis is presented. The composite is heated to 200°C to yield the desired product, forming with the introduction of triethyl- ammonium salt [Et3NH]2[B12H12] into the silicate matrix of a sodium liquid glass. The morphology and phase composition of the synthesized sample are studied through SEM and X-ray diffraction methods, in comparison to those of a standard salt sample Na2[B12H12]. Based on the obtained data, the sample under study is an amorphous composite, on the surface of which nanoscale crystals of Na2[B12H12] form.


Coatings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 724
Author(s):  
Sara Massardo ◽  
Alessandro Cingolani ◽  
Cristina Artini

Rare earth-doped ceria thin films are currently thoroughly studied to be used in miniaturized solid oxide cells, memristive devices and gas sensors. The employment in such different application fields derives from the most remarkable property of this material, namely ionic conductivity, occurring through the mobility of oxygen ions above a certain threshold temperature. This feature is in turn limited by the association of defects, which hinders the movement of ions through the lattice. In addition to these issues, ionic conductivity in thin films is dominated by the presence of the film/substrate interface, where a strain can arise as a consequence of lattice mismatch. A tensile strain, in particular, when not released through the occurrence of dislocations, enhances ionic conduction through the reduction of activation energy. Within this complex framework, high pressure X-ray diffraction investigations performed on the bulk material are of great help in estimating the bulk modulus of the material, and hence its compressibility, namely its tolerance toward the application of a compressive/tensile stress. In this review, an overview is given about the correlation between structure and transport properties in rare earth-doped ceria films, and the role of high pressure X-ray diffraction studies in the selection of the most proper compositions for the design of thin films.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 854
Author(s):  
Antonia Hoppe ◽  
Cornelius Dirksen ◽  
Karl Skadell ◽  
Michael Stelter ◽  
Matthias Schulz ◽  
...  

A new preparation concept of a partially porous solid-state bilayer electrolyte (BE) for high-temperature sodium-ion batteries has been developed. The porous layer provides mechanical strength and is infiltrated with liquid and highly conductive NaAlCl4 salt, while the dense layer prevents short circuits. Both layers consist, at least partially, of Na-β-alumina. The BEs are synthesized by a three-step procedure, including a sol-gel synthesis, the preparation of porous, calcined bulk material, and spin coating to deposit a dense layer. A detailed study is carried out to investigate the effect of polyethylene oxide (PEO) concentration on pore size and crystallization of the bulk material. The microstructure and crystallographic composition are verified for all steps via mercury intrusion, X-ray diffraction, and scanning electron microscopy. The porous bulk material exhibits an unprecedented open porosity for a NaxAlOy bilayer-system of ≤57% with a pore size of ≈200–300 nm and pore volume of ≤0.3 cm3∙g−1. It contains high shares of crystalline α-Al2O3 and Na-β-alumina. The BEs are characterized by impedance spectroscopy, which proved an increase of ionic conductivity with increasing porosity and increasing Na-β-alumina phase content in the bulk material. Ion conductivity of up to 0.10 S∙cm−1 at 300 °C is achieved.


2004 ◽  
Vol 37 (6) ◽  
pp. 967-976 ◽  
Author(s):  
Andrew C. Jupe ◽  
Stuart R. Stock ◽  
Peter L. Lee ◽  
Nikhila N. Naik ◽  
Kimberly E. Kurtis ◽  
...  

Spatially resolved energy dispersive X-ray diffraction, using high-energy synchrotron radiation (∼35–80 keV), was used nondestructively to obtain phase composition profiles along the radii of cylindrical cement paste samples to characterize the progress of the chemical changes associated with sulfate attack on the cement. Phase distributions were acquired to depths of ∼4 mm below the specimen surface with sufficient spatial resolution to discern features less than 200 µm thick. The experimental and data analysis methods employed to obtain quantitative composition profiles are described. The spatial resolution that could be achieved is illustrated using data obtained from copper cylinders with a thin zinc coating. The measurements demonstrate that this approach is useful for nondestructively visualizing the sometimes complex transformations that take place during sulfate attack on cement-based materials. These transformations can be spatially related to microstructure as seen by computed microtomography.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Prashant Pradhan ◽  
Juan Carlos Alonso ◽  
Monserrat Bizarro

ZnO and Al doped ZnO films were produced by spray pyrolysis. The films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), UV-vis spectroscopy, and photoluminescence. Their photocatalytic activity was evaluated by the decomposition of the methyl orange dye using different light sources: ultraviolet light, artificial white light, and direct sunlight. The films were also tested under darkness for comparison. The ZnO films were able to degrade the test pollutant under UV and sunlight in more than a 60% after 180 min of irradiation and a scarce degradation was obtained using white light. However, the Al doped ZnO films presented a very high degradation rate not only under UV and sunlight (100% degradation), but also under white light (90% degradation after the same irradiation time). An unexpected high degradation was also obtained in the dark, which indicates that a nonphotonic process is taking place parallel to the photocatalytic process. This can be due to the extra electrons—provided by the aluminum atoms—that migrate to the surface and produce radicals favoring the decomposition process even in the dark. The high activity achieved by the ZnO: Al films under natural conditions can be potentially applied to water treatment processes.


Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4404
Author(s):  
Shengyang Guan ◽  
David C. Mayer ◽  
Christian Jandl ◽  
Sebastian J. Weishäupl ◽  
Angela Casini ◽  
...  

A new solvatomorph of [Au3(1-Methylimidazolate)3] (Au3(MeIm)3)—the simplest congener of imidazolate-based Au(I) cyclic trinuclear complexes (CTCs)—has been identified and structurally characterized. Single-crystal X-ray diffraction revealed a dichloromethane solvate exhibiting remarkably short intermolecular Au⋯Au distances (3.2190(7) Å). This goes along with a dimer formation in the solid state, which is not observed in a previously reported solvent-free crystal structure. Hirshfeld analysis, in combination with density functional theory (DFT) calculations, indicates that the dimerization is generally driven by attractive aurophilic interactions, which are commonly associated with the luminescence properties of CTCs. Since Au3(MeIm)3 has previously been reported to be emissive in the solid-state, we conducted a thorough photophysical study combined with phase analysis by means of powder X-ray diffraction (PXRD), to correctly attribute the photophysically active phase of the bulk material. Interestingly, all investigated powder samples accessed via different preparation methods can be assigned to the pristine solvent-free crystal structure, showing no aurophilic interactions. Finally, the observed strong thermochromism of the solid-state material was investigated by means of variable-temperature PXRD, ruling out a significant phase transition being responsible for the drastic change of the emission properties (hypsochromic shift from 710 nm to 510 nm) when lowering the temperature down to 77 K.


Sign in / Sign up

Export Citation Format

Share Document