The Influence of the Induced Ferrite and Precipitates of Ti-bearing Steel on the Ductility of Continuous Casting Slab

2014 ◽  
Vol 0 (0) ◽  
Author(s):  
Guoyu Qian ◽  
Guoguang Cheng ◽  
Zibing Hou

AbstractIn order to investigate the loss of the ductility of Ti-bearing ship plate steel under 1000 °C, where the ductility begins to reduce rapidly, so the hot ductility of Ti-bearing ship plate steel has been obtained using the Gleeble 1500 thermal-mechanical simulator and also the studies about the effect of grain boundary ferrite films and precipitates containing Ti on the ductility has been carried out. The result showed that the TiN particles precipitating at 950 °C with a larger size and smaller volume fraction cannot effectively suppress the occurrence of recrystallization and the ductility still retains at a high level, although R.A. value presents a certain degree of decline compared with 1000 °C. A large number of smaller Ti(C,N) particles precipitate at 900 °C and can induce the formation of a very small amount of fine grain boundary ferrite, which deteriorates the adhesion strength of the grain boundary, so the R.A. value rapidly reduces to less than 50%. When the temperature falls to close Ae3 (827 °C), the amount of the grain boundary ferrite films increase due to the ferrite phase transformation, but the ferrite film thickness becomes more uneven at the same time, which results in the increase of strain concentration and plays a leading role in causing the decrease of ductility, so the R.A. value has been kept less than 40% as the temperature cooling to 800 °C from 850 °C. When the temperature further decreases, the ductility starts to recover due to the increase of average ferrite film thickness to a greater degree which greatly reduces the strain concentration of the grain boundary.

2021 ◽  
Vol 272 ◽  
pp. 02014
Author(s):  
Bo Chen ◽  
Liping Guo ◽  
Lihui Zhang ◽  
Wenxiao Zhang ◽  
Yin Bai ◽  
...  

The influence of polyvinyl alcohol (PVA) fiber volume fraction and fly ash content on the creep behavior of high ductility cementitious composites (HDCC) under compression was investigated. For this investigation, the creep behavior of four HDCC groups with cube compressive strength of 30–50 MPa, PVA fiber volume fraction of 1.5% and 2.0%, and fly ash content of 60% and 80% at 7 d and 28 d loading periods, respectively, were evaluated. A compressive creep model, which reflects the loading age and holding time, was established. The results revealed that when the load was applied at 7 d and 28 d, and then maintained for 245 d, the specific creep of HDCC ranged from 95×10-6/ MPa to 165×10-6/ MPa and from 59×10-6/ MPa to 135 × 10−6/ MPa, respectively. The corresponding creep coefficients ranged from 1.48 to 2.25 and from 1.10 to 1.94, respectively. The PVA fiber volume fraction and fly ash content were the main factors affecting the specific creep of HDCC, which increased with increasing fiber fraction and fly ash content. Under short-term loading, the fiber volume fraction played a leading role in the specific creep, and the fly ash content played the leading role during long-term loading. Furthermore, the specific creep and creep coefficient decreased significantly with increasing loading age. The classical creep model described by a power exponent function is suitable for HDCC.


Author(s):  
Qianren Tian ◽  
Guocheng Wang ◽  
Xinghu Yuan ◽  
Qi Wang ◽  
Seetharaman Sridhar

Nitride and carbide are the second phases which play an important role in the performance of bearing steel, and their precipitation behavior is complicated. In this study, TiN-MCx precipitations in GCr15 bearing steels were obtained by non-aqueous electrolysis, and their precipitation mechanisms were studied. TiN is the effective heterogeneous nucleation site for Fe7C3 and Fe3C, therefore, MCx can precipitate on the surface of TiN easily, its chemistry component consists of M3C and M7C3 (M = Fe, Cr, Mn) and Cr3C2. TiN-MCx with high TiN volume fraction, TiN forms in early stage of solidification, and MCx precipitates on TiN surface after TiN engulfed by the solidification advancing front. TiN-MCx with low TiN volume fraction, TiN and MCx form in late stage of solidification, TiN can not grow sufficiently and is covered by a large number of precipitated MCx particles.


2010 ◽  
Vol 17 (3) ◽  
pp. 350-361
Author(s):  
C.J. Boehlert ◽  
S.C. Longanbach

AbstractUdimet 188 was subjected to thermomechanical processing (TMP) in an attempt to understand the effects of cold-rolling deformation on the microstructure and tensile-creep behavior. Commercially available sheet was cold rolled to varying amounts of deformation (between 5–35% reduction in sheet thickness) followed by a solution treatment at 1,464 K (1,191°C) for 1 h and subsequent air cooling. This sequence was repeated four times to induce a high-volume fraction of low-energy grain boundaries. The resultant microstructure was characterized using electron backscattered diffraction. The effect of the TMP treatment on the high-temperature [1,033–1,088 K (760–815°C)] creep behavior was evaluated. The measured creep stress exponents (6.0–6.8) suggested that dislocation creep was dominant at 1,033 K (760°C) for stresses ranging between 100–220 MPa. For stresses ranging between 25–100 MPa at 1,033 K (760°C), the stress exponents (2.3–2.8) suggested grain boundary sliding was dominant. A significant amount of grain boundary cracking was observed both on the surface and subsurface of deformed samples. To assess the mechanisms of crack nucleation, in situ scanning electron microscopy was performed during the elevated-temperature tensile-creep deformation. Cracking occurred preferentially along general high-angle grain boundaries (GHAB) and less than 25% of the cracks were found on low-angle grain boundaries (LAB) and coincident site lattice boundaries (CSLB). Creep rupture experiments were performed at T = 1,088 K (815°C) and σ = 165 MPa and the greatest average time-to-rupture was exhibited by the TMP sheet with the greatest fraction of LAB+CSLB. However, a clear correlation was not exhibited between the grain boundary character distribution and the minimum creep rates. The findings of this work suggest that although grain boundary engineering may be possible for this alloy, simply relating the fraction of grain boundary types to the creep resistance is not sufficient.


2012 ◽  
Vol 04 (03) ◽  
pp. 1250012 ◽  
Author(s):  
F. TRENTACOSTE ◽  
I. BENEDETTI ◽  
M. H. ALIABADI

In this study, the influence of porosity on the elastic effective properties of polycrystalline materials is investigated using a 3D grain boundary micro mechanical model. The volume fraction of pores, their size and distribution can be varied to better simulate the response of real porous materials. The formulation is built on a boundary integral representation of the elastic problem for the grains, which are modeled as 3D linearly elastic orthotropic domains with arbitrary spatial orientation. The artificial polycrystalline morphology is represented using 3D Voronoi Tessellations. The formulation is expressed in terms of intergranular fields, namely displacements and tractions that play an important role in polycrystalline micromechanics. The continuity of the aggregate is enforced through suitable intergranular conditions. The effective material properties are obtained through material homogenization, computing the volume averages of micro-strains and stresses and taking the ensemble average over a certain number of microstructural samples. The obtained results show the capability of the model to assess the macroscopic effects of porosity.


2001 ◽  
Vol 89 (11) ◽  
pp. 6970-6972 ◽  
Author(s):  
N. K. Todd ◽  
N. D. Mathur ◽  
M. G. Blamire

1973 ◽  
Vol 4 (3) ◽  
pp. 783-792 ◽  
Author(s):  
C. Atkinson ◽  
H. B. Aaron ◽  
K. R. Kinsman ◽  
H. I. Aaronson

MRS Bulletin ◽  
2000 ◽  
Vol 25 (9) ◽  
pp. 51-55 ◽  
Author(s):  
Masanori Abe

“Ferrite plating” is a typical “soft solution processing” (SSP) application; it enables the formation of oxide ferromagnetic films from an aqueous solution atT24−100°C under atmospheric pressure. Using ferrite plating, we can grow crystallized ferrite films of spinel-type (MFe)3O4(where M = Fe, Co, Ni, Zn, Al, Cr, etc.) in one step, requiring no heat treatment. This opens the door to fabricating novel ferritefilm devices using substrates of such nonheat-resistant materials as plastics and GaAs integrated circuits; conventional ferrite-film preparation techniques, such as sputtering, vacuum evaporation, molecularbeam epitaxy, liquid-phase epitaxy, and so on, require high temperatures (>∼600°C) for the crystallization of ferrites, which deteriorates the non-heat-resistant substrates. Ferrite plating is a unique technique that allows us to synthesize ferrite “films” by means of a wet chemical process. There are many techniques, for synthesizing ferrite “particles” from aqueous solutions, but no technique, to our knowledge, enables ferrite-film synthesis by a wet chemical process.


2011 ◽  
Vol 53 (3) ◽  
pp. 1137-1142 ◽  
Author(s):  
J. Hou ◽  
Q.J. Peng ◽  
Z.P. Lu ◽  
T. Shoji ◽  
J.Q. Wang ◽  
...  

1992 ◽  
Vol 287 ◽  
Author(s):  
H.-J. Kleebe ◽  
M. K. Cinibulk ◽  
I. Tanaka ◽  
J. Bruley ◽  
R. M. Cannon ◽  
...  

ABSTRACTCharacterization of silicon nitride ceramics by transmission electron microscopy (TEM) provides structural and compositional information on intergranular phases necessary to elucidate the factors that can influence the presence and thickness of grain-boundary films. Different TEM techniques can be used for the detection and determination of intergranular-film thickness, however, the most accurate results are obtained by high-resolution electron microscopy (HREM). HREM studies were applied, in conjunction with analytical electron microscopy, to investigate the correlation between intergranular-phase composition and film thickness. Statistical analyses of a number of grain-boundary films provided experimental verification of a theoretical equilibrium film thickness. Model experiments on a high-purity Si3N4 material, doped with low amounts of Ca, suggest the presence of two repulsive forces, a steric force and a force produced by an electrical double layer, that may act to balance the attractive van der Waals force necessary to establish an equilibrium film thickness.


Sign in / Sign up

Export Citation Format

Share Document