Transient Predictive Model for Dynamic Analysis, Kinetic Study, and Reactor Design of Triglycerides Transesterification to Biodiesel

2016 ◽  
Vol 14 (1) ◽  
pp. 235-249
Author(s):  
Felipe A. Perdomo-Hurtado ◽  
Rubén Vázquez-Medina

AbstractThis paper proposes a predictive mechanistic model to describe the classical pseudo-homogeneous second order kinetic law; the objective of the model is to study the transesterification process of any triglycerides feed stock into the synthetized biodiesel in a batch reactor, which contains a jacket heat exchanger system and a stirrer. The developed model consists of a set of ordinary differential equations which represent the mass and the energy balance for each chemical component in the reactor, accomplished by the temperature’s dynamics in the heat exchanger system, as well as, a reaction kinetic scheme, where the apparent rate and activation energies follow the Arrhenius equation (Noureddini and Zhu 1997, 1457), and the physical-chemical properties of oils, biodiesel and products have been considered. The physical-chemical properties required for products, intermediates and reactants were estimated implementing molecular group contribution methods. The constants in the reactions rates were taken directly from relevant works oriented to experimental study of the kinetic triglycerides methanolysis. The model’s usefulness was verified comparing the produced results against experimental results obtained in the biodiesel synthesis from sunflower (Vicente et al. 2005, 5447), Brassica carinata (Vicente et al. 2005, 899) and soybean (Noureddini and Zhu 1997, 1457) oils. In each case, the model matched the experimental results. Using the proposed model, it is possible to evaluate how the operating conditions and variables like the type of feed, the temperatures of the reactor and the jacket, the heat transfer, the stirrer rate and the changes on thermophysical properties of the species affect the conversion and reactor performance.

1929 ◽  
Vol 2 (4) ◽  
pp. 656-667 ◽  
Author(s):  
Ernst A. Grenquist

Abstract A theoretical conception of the reënforcement of rubber by pigments has been developed. New experimental evidence has been presented which leads to a better understanding of the final dispersion and reënforcement of a rubber compound. It is shown that pigment reënforcement is influenced by (a) rubber structure, (b) the state of aggregation of proteins and natural resins, (c) the isotropic properties of carbonblack particles, and (d) the presence of recrystallized rhombic sulfur at the beginning of vulcanization. A PREVIOUS paper (10)* described the distribution of particles in compounded rubber with special reference to agglomeration and flocculation. It was emphasized that a correct understanding of the final dispersion and reënforcement of a rubber compound could only be obtained with a more thorough knowledge of the structure and physical-chemical properties of rubber and pigments themselves and of the nature of the vulcanization process. New experimental results in regard to these particular points are presented in the following investigation.


2010 ◽  
Vol 444 ◽  
pp. 47-68 ◽  
Author(s):  
J.L. Rodríguez-López ◽  
J.M. Montejano-Carrizales ◽  
J.P. Palomares-Báez ◽  
H. Barrón-Escobar ◽  
J. Jesús Velázquez-Salazar ◽  
...  

Nanoparticle research disciplines—chemical synthesis, applied physics and devices based on their physical-chemical properties, and computational physics—have been very active fields for the last 15 years or so, because of the potential and current applications in medicine, catalysis, energy storage, environment and electronics applications. This wide spectrum of disciplines and their applications keep metallic nanoparticles as one of the most promising nanostructures and their research as one of the cornerstones of nanotechnology. In this contribution we present a comprehensive and extended geometrical description for the most common shapes and structures for metallic nanoparticles, as well as experimental results for these geometries with some variations given by truncations.


2019 ◽  
pp. 19-23
Author(s):  
Erika Montero ◽  
David Contreras-López ◽  
Rosalba Fuentes ◽  
María Del Rosario Galindo

The production of artificial polymers is, today, one of themost important activities of the chemical industry, polymersare widely used in everyday life, as, there are different types of polymers, they can be used for different uses. These polymeric materials have unique mechanical, physical and chemical properties, which most other materials do not possess, not to mention that its cost is lower than the other materials. The present research work focuses on the determination of optimal operating conditions for the polymerization of styrene and methyl methacrylate in a Batch reactor, as well as the influence of inorganic salt in this case NaCl in the performance of reaction and in the size of the material polymer, through the process of suspension using a synthetic route of polymerization by radical free conventional (FRP), where viscometry to the polymeric material testing was performed for this way characterize it, and to determine factors of interest such as the molecular weight, etc.


2016 ◽  
Vol 26 (3) ◽  
pp. 50-62
Author(s):  
Etzail Vega ◽  
J. A. González-Calderón ◽  
Antonio Villegas ◽  
Raúl Montiel ◽  
Elías Pérez ◽  
...  

Automotive bezels of polycarbonate (PC) were prepared in this work by varying the amount of recycled polymer in order to estimate an acceptable scrap/virgin ratio that maintains the material properties. Conducted tests allow us to define the limit to don't compromise the performance of recycled pieces. The studied properties were their chemical structure, molecular weight distribution, mechanical and surface properties of the samples. Results showed no change in the chemical structure of PC chains. However, variations in molecular distribution was observed by the addition of recycled material. Last one ascribed to chain scission at the carbonyl group of the PC molecules, and the formation of physical cross-linking as a consequence of degradation due to injection process. Both stiffness and surface properties of the material increased as the percentage of recycled PC rose. Therefore, although the chemical structure of the PC is preserved during the recycling process, fluid and elastic properties are modified limiting their operating conditions and industrial tolerance. Conducted analysis allows to establish that the addition to virgin PC of 20% of recycled material don't affect the physical-chemical properties of pieces, also maintains the quality standars of cosmetics tests.  


2018 ◽  
Vol 18 (1) ◽  
pp. 166 ◽  
Author(s):  
Wega Trisunaryanti ◽  
Triyono Triyono ◽  
Ria Armunanto ◽  
Lathifah Puji Hastuti ◽  
Desinta Dwi Ristiana ◽  
...  

Hydrocracking of α-cellulose has been conducted in a semi-batch reactor at 400, 450, and 500 °C with hydrogen flow (30 mL/min.) for 4 h. Mordenite (MOR) and Co, Ni and Pd metal supported on the MOR were used as solid catalysts. The catalysts were characterized using X-ray Diffractometer (XRD), Fourier Transform Infrared (FTIR) spectroscopy, and Scanning Electron Microscopy (SEM) to evaluate the physical-chemical properties. Energy Dispersive X-ray (EDX) and Inductively Coupled Plasma (ICP) were used to analyze the amount of metal impregnated on the catalysts. The liquid product was analyzed using Gas Chromatograph-Mass Spectroscopy (GC-MS). Thermal hydrocracking was also conducted at 450 °C with the amount of liquid product was 37.86 wt.%. The highest liquid conversion obtained by mordenite catalyst was 94.66 wt.% at 450 °C and the highest liquid conversion (98.08 wt.%) was reached by Pd/MOR catalyst at 400 °C.


2021 ◽  
Vol 17 (6) ◽  
Author(s):  
Silvio Alex Pereira Mota ◽  
Andréia Andrade Mancio ◽  
Jhuliana Silva Santanna ◽  
Valtiane de Jesus Pantoja Gama ◽  
Nélio Teixeira Machado

The present paper investigated the influence of the reaction time on the quality (physical-chemical properties) of biofuels obtained by catalytic cracking of crude palm oil (CPO). The influence of the reaction time (10, 20, 30, 40, 50, and 60 min) on the quality of crude biofuels denominated organic liquid products (OLP) was investigated through experiments carried out in a cracking pilot plant with capacity of 143 L in the following operating conditions: 20 wt% sodium carbonate (Na2CO3) as catalyst, 450 °C, 1 atm and batch mode operation. The quality of the biofuels produced was certified through physical-chemical analyzes (acid value, saponification value, specific gravity, refractive index, kinematic viscosity, corrosiveness to copper, and flash point). The results show that the physical-chemical properties of OLP decrease as the reaction time increases, in such a way that, catalytic cracking process occurs efficiently in the interval of 10 to 20 min after its start, which can be finalized when it reaches 30 minutes of reaction. In addition, Na2CO3 was essential as a catalyst in the cracking reaction to reduce the physical-chemical properties of OLPs obtained at different times, allowing the specific gravity, kinematic viscosity and corrosivity to copper to be within or very close to the limits established for Diesel S10.


Author(s):  
E.D. Boyes ◽  
P.L. Gai ◽  
D.B. Darby ◽  
C. Warwick

The extended crystallographic defects introduced into some oxide catalysts under operating conditions may be a consequence and accommodation of the changes produced by the catalytic activity, rather than always being the origin of the reactivity. Operation without such defects has been established for the commercially important tellurium molybdate system. in addition it is clear that the point defect density and the electronic structure can both have a significant influence on the chemical properties and hence on the effectiveness (activity and selectivity) of the material as a catalyst. SEM/probe techniques more commonly applied to semiconductor materials, have been investigated to supplement the information obtained from in-situ environmental cell HVEM, ultra-high resolution structure imaging and more conventional AEM and EPMA chemical microanalysis.


2018 ◽  
Vol 69 (9) ◽  
pp. 2323-2330 ◽  
Author(s):  
Daniela C. Culita ◽  
Claudia Maria Simonescu ◽  
Rodica Elena Patescu ◽  
Nicolae Stanica

A series of three chitosan-based magnetic composites was prepared through a simple coprecipitation method. It was investigated the influence of mass ratio between chitosan and magnetite on the physical and chemical properties of the composites in order to establish the optimum conditions for obtaining a composite with good adsorption capacity for Pb(II) and Cu(II) from mono and bicomponent aqueous solutions. It was found that the microspheres prepared using mass ratio chitosan / magnetite 1.25/1, having a saturation magnetization of 15 emu g--1, are the best to be used as adsorbent for the metal ions. The influence of different parameters such as initial pH values, contact time, initial concentration of metal ions, on the adsorption of Pb(II) and Cu(II) onto the chitosan-based magnetic adsorbent was investigated in details. The adsorption process fits the pseudo-second-order kinetic model in both mono and bicomponent systems, and the maximum adsorption capacities calculated on the basis of the Langmuir model were 79.4 mg g--1 for Pb(II) and 48.5 mg g--1 for Cu(II) in monocomponent systems, while in bicomponent systems were 88.3 and 49.5 mg g--1, respectively. The results revealed that the as prepared chitosan-based magnetic adsorbent can be an effective and promising adsorbent for Pb(II) and Cu(II) from mono and bicomponent aqueous solutions.


Sign in / Sign up

Export Citation Format

Share Document