Physicochemical Properties of Oxalic Acid-Modified Chitosan/Neem Leave Composites from Pessu River Crab Shell

Author(s):  
Oluwadayo Francis Asokogene ◽  
Muhammad Abbas Ahmad Zaini ◽  
Misau Muhammad Idris ◽  
Surajudeen Abdulsalam ◽  
Aliyu El-Nafaty Usman

Abstract This study was aimed to evaluate the characteristics of chitosan from Pessu river crab shell and its derivatives as prospective adsorbent. The synthesized chitosan (CH) was modified with 10 % (w/v) oxalic acid (CHOx), while the composites (CHOx-ANL1, CHOx-ANL2 and CHOx-ANL3) were designated according to the amount of activated neem leave (ANL). The materials were characterized by Fourier transform infrared (FTIR), energy-dispersive X-ray (EDAX), X-ray diffraction (XRD), scanning electron microscope (SEM), Brunauer-Emmett-Teller (BET), thermal gravimetric (TGA) and methylene blue dye adsorption. The FTIR spectra of chitosan samples show the characteristics of primary and secondary amine/amide groups. The SEM images exhibit a tight, porous and fractured surface, which is covered with activated neem leave for the composites. The BET surface area of chitosan materials is in the increasing order of, CH < CHOx-ANL1 < CHOx-ANL2 < CHOx < CHOx-ANL3. CHOx-ANL3 displays a higher surface area of 389 m2/g, and 70.9 % mesoporosity. Despite its lower surface area of 258 m2/g (65.4 % mesoporosity), CHOx-ANL1 exhibits a greater methylene blue adsorption of 90.8 mg/g at dye concentration of 300 mg/L. The possible removal mechanisms include ionic interaction between dye molecules and functional groups, and surface adsorption due to the textural properties of chitosan samples. Chitosan from Pessu river crab shell and its derivatives are promising adsorbent candidate for dyes and heavy metals removal from water.

2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
H. Ait Ahsaine ◽  
Z. Anfar ◽  
M. Zbair ◽  
M. Ezahri ◽  
N. El Alem

Zirconium oxide/activated carbon (Zr3O/AC) composite was synthesized to remove methylene blue (MB) and crystal violet (CV) from the aqueous medium. The Zr3O/AC sample was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray analyses (EDS), Raman spectroscopy (RS), BET surface area, and Fourier transform infrared spectroscopy (FTIR). XRD profiles confirmed the successful synthesis of the zirconium oxide/activated carbon composite. SEM images showed multideveloped walls with irregular particle size with channel arrays. The nitrogen physisorption combines I and IV types with a calculated BET surface area of 1095 m2/g. Raman spectrum illustrated a disorder of both crystalline structure and the graphitic structure. The adsorption was better fitted to the pseudo-second-order (PSO) kinetic model. Langmuir model fitted better the experimental results of MB adsorption, whereas the CV was better consistent with the Freundlich model. The obtained results suggested that the MB and CV adsorption might be influenced by the mass transfer that involves multiple diffusion steps. The maximum adsorption capacities are 208.33 and 204.12 mg/g for MB and CV, respectively. The MB and CV removal mechanisms were proposed, and statistical optimization was performed using central composite design combined with the response surface methodology.


2021 ◽  
Author(s):  
Dzoujo Tamaguelon Hermann ◽  
Tome Sylvain ◽  
Victor O Shikuku ◽  
Jean T Tchuigwa ◽  
Alex Spieß ◽  
...  

Abstract Pozzolan-based eco-adsorbents were synthesized by geopolymerization with addition of hydrogen peroxide (H2O2) with mass ratios 0% (GP0) and 1% (GP1) and the products used to sorb cationic methylene blue (MB) dye from water. The chemical composition, textural properties, mineral composition, surface functions, as well as morphology and internal structure of these samples were determined by the X-ray fluorescence, adsorption of nitrogen by the B.E.T (Bruamer Emmet Teller) method, X-ray diffraction, Fourier Transformed Infrared Spectroscopy (FTIR) and scanning electron microscopy (SEM), respectively. The effects of contact time, dye initial concentration, adsorbent dosage, pH and temperature were examined and are herein reported. Incorporation of 1% H2O2 increased the specific surface area from 4.344 to 5.610 m2/g representing ~ 29% increase in surface area. This translated an increase in the MB adsorption capacity by 15 orders of magnitude from 24.4 to 366.2 mg/g for GP0 and GP1, respectively. The adsorption rates of methylene blue on the two geopolymers were best described by the pseudo-second order kinetic model. The adsorption equilibrium data were best described by the Sips and Freundlich isotherms models for GP0 and GP1, respectively. Thermodynamically, it was determined that the adsorption of methylene blue onto GP0 and GP1 is a physical and endothermic process. The results show that incorporation of low amount of hydrogen peroxide into pozzolan-based geopolymers increases their adsorption capacity for methylene blue dye stupendously while preserving the surface chemistry.


Processes ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 1238
Author(s):  
Garven M. Huntley ◽  
Rudy L. Luck ◽  
Michael E. Mullins ◽  
Nick K. Newberry

Four naturally occurring zeolites were examined to verify their assignments as chabazites AZLB-Ca and AZLB-Na (Bowie, Arizona) and clinoptilolites NM-Ca (Winston, New Mexico) and NV-Na (Ash Meadows, Nevada). Based on powder X-ray diffraction, NM-Ca was discovered to be mostly quartz with some clinoptilolite residues. Treatment with concentrated HCl (12.1 M) acid resulted in AZLB-Ca and AZLB-Na, the chabazite-like species, becoming amorphous, as confirmed by powder X-ray diffraction. In contrast, NM-Ca and NV-Na, which are clinoptilolite-like species, withstood boiling in concentrated HCl acid. This treatment removes calcium, magnesium, sodium, potassium, aluminum, and iron atoms or ions from the framework while leaving the silicon framework intact as confirmed via X-ray fluorescence and diffraction. SEM images on calcined and HCl treated NV-Na were obtained. BET surface area analysis confirmed an increase in surface area for the two zeolites after treatment, NM-Ca 20.0(1) to 111(4) m2/g and NV-Na 19.0(4) to 158(7) m2/g. 29Si and 27Al MAS NMR were performed on the natural and treated NV-Na zeolite, and the data for the natural NV-Na zeolite suggested a Si:Al ratio of 4.33 similar to that determined by X-Ray fluorescence of 4.55. Removal of lead ions from solution decreased from the native NM-Ca, 0.27(14), NV-Na, 1.50(17) meq/g compared to the modified zeolites, 30 min HCl treated NM-Ca 0.06(9) and NV-Na, 0.41(23) meq/g, and also decreased upon K+ ion pretreatment in the HCl modified zeolites.


Author(s):  
Garven M Huntley ◽  
Rudy Lin Luck ◽  
Michael E Mullins ◽  
Nick K Newberry

Four naturally occurring zeolites AZLB-Ca and AZLB-Na (Bowie, Arizona), NM-Ca (Winston, New Mexico), and NV-Na (Ash Meadows, Nevada) were studied to evaluate structural modifications after treatment with HCl acid. AZLB-Ca and AZLB-Na are chabazite-like species and become amorphous when boiled in concentrated HCl acid as confirmed by powder X-ray diffraction. In contrast, NM-Ca and NV-Na which are clinoptilolite-like species withstood boiling in concentrated HCl acid. This treatment removes calcium, magnesium, sodium, potassium, aluminum, and iron atoms or ions from the framework while leaving the silicon framework intact as confirmed via X-ray fluorescence and diffraction. SEM images on calcined and HCl treated NV-Na were obtained. BET surface area analysis confirmed an increase in surface area for the two zeolites after treatment, NM-Ca (20.0(1) to 111(4) m2/g) and NV-Na (19.0(4) to 158(7) m2/g). 29Si and 27Al MAS NMR were performed on the natural and treated NV-Na zeolite and the data for the natural NV-Na zeolite suggested a Si:Al ratio of 4.33 similar to that determined by X-Ray fluorescence of 4.55. Removal of lead ions from solution decreased from the native (NM-Ca, 0.27(14), NV-Na, 1.50(17) meq/g) compared to the modified zeolites (30 min HCl treated NM-Ca 0.06(9) and NV-Na, 0.41(23) meq/g) and also decreased upon K+ ion pretreatment in the HCl modified zeolites.


2020 ◽  
Vol 975 ◽  
pp. 115-120
Author(s):  
Chaval Sriwong ◽  
Kittisak Choojun

This work presented the high activity of metal-free g-C3N4 photocatalyst for methylene blue (MB) removing over natural sunlight irradiation. These g-C3N4 photocatalysts materials were synthesized by a conventional thermal condensation method using melamine as a precursor under treated at the various annealing temperatures (450 °C, 500 °C, 550 °C, 600 °C and 650 °C). All as-synthesized samples were characterized and confirmed by a several techniques, such as, X-ray diffraction (XRD), Fourier transformed infrared spectroscopy (FTIR), UV-vis diffuse reflectance spectrometer (DRS), scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDS), and Brunauer-Emmett-Teller (BET) specific surface area. XRD and FTIR results confirmed that the as-synthesized g-C3N4 samples were completely synthesized at annealing temperature of 500 °C. SEM images showed the morphologies of the g-C3N4 samples had more flake-like structures upon the increasing of annealing temperatures. While DRS results indicated that the absorption edges of as-synthesized g-C3N4 samples were shifted to visible-light region, except the sample as-synthesized at 650 °C (g-C3N4-650 °C). Moreover, the photocatalytic properties of metal-free g-C3N4 photocatalyst materials were evaluated by degrading of MB dye solution under natural sunlight irradiation for 100 min. The results revealed that the highest photocatalytic activity was exhibited by the sample synthesized at 600 °C, which the apparent rate constant (kapp.) was 0.0291 min-1. The orders of activities as: g-C3N4-600 °C > g-C3N4-650 °C > g-C3N4-550 °C > g-C3N4-500 °C > g-C3N4-450 °C. Hence, the metal-free g-C3N4 photocatalyst appears to be an attractive-material for water or wastewater purification applications over activated by sunlight irradiation.


Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1403
Author(s):  
Kashma Sharma ◽  
Shreya Sharma ◽  
Vipasha Sharma ◽  
Pawan Kumar Mishra ◽  
Adam Ekielski ◽  
...  

The present work demonstrates the development of hydroxyapatite (HA)/gold (Au) nanocomposites to increase the adsorption of methylene blue (MB) dye from the wastewater. HA nanopowder was prepared via a wet chemical precipitation method by means of Ca(OH)2 and H3PO4 as starting materials. The biosynthesis of gold nanoparticles (AuNPs) has been reported for the first time by using the plant extract of Acrocarpus fraxinifolius. Finally, the as-prepared HA nanopowder was mixed with an optimized AuNPs solution to produce HA/Au nanocomposite. The prepared HA/Au nanocomposite was studied by using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and Scanning Electron Microscopy (SEM) with Energy Dispersive X-Ray Analysis (EDX) analysis. Adsorption studies were executed by batch experiments on the synthesized composite. The effect of the amount of adsorbent, pH, dye concentration and temperature was studied. Pseudo-first-order and pseudo-second-order models were used to fit the kinetic data and the kinetic modeling results reflected that the experimental data is perfectly matched with the pseudo-first-order kinetic model. The dye adsorbed waste materials have also been investigated against Pseudomonas aeruginosa, Micrococcus luteus, and Staphylococcus aureus bacteria by the agar well diffusion method. The inhibition zones of dye adsorbed samples are more or less the same as compared to as-prepared samples. The results so obtained indicates the suitability of the synthesized sample to be exploited as an adsorbent for effective treatment of MB dye from wastewater and dye adsorbed waste as an effective antibacterial agent from an economic point of view.


NANO ◽  
2015 ◽  
Vol 10 (04) ◽  
pp. 1550059 ◽  
Author(s):  
Lipeeka Rout ◽  
Prashanth Rengasamy ◽  
Basanti Ekka ◽  
Aniket Kumar ◽  
Priyabrat Dash

We report the synthesis of TiO 2-supported monometallic Ag , Sn and bimetallic AgSn nanoparticle catalysts prepared using sol–gel method via a rational nanoparticle encapsulation route. The samples were thoroughly characterized by ultraviolet-visible spectroscopy, Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), field emission scanning electron microscope (FESEM) transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS) with image mapping and Brunauer–Emmett–Teller (BET) surface area analyzer. The supported bimetallic AgSn catalyst had the anatase structure, surface area of 50 m2/g and 2.6 ± 0.6 nm particle size. The efficiency of the catalysts was evaluated on photodegradation of methylene blue (MB) dye under visible light. The photocatalytic activity of MB was significantly enhanced in the presence of bimetallic AgSn nanoparticles (NPs) as compared to individual metal nanoparticles. Reusability study of the photocatalyst showed that the catalyst can be reused upto 5 runs with minimal loss in activity. Kinetic study revealed that the degradation reaction follows a pseudo first-order pathway.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Hizkeal Tsade Kara ◽  
Sisay Tadesse Anshebo ◽  
Fedlu Kedir Sabir ◽  
Getachew Adam Workineh

The study was focused on the preparation and characterizations of sodium periodate-modified nanocellulose (NaIO4-NC) prepared from Eichhornia crassipes for the removal of cationic methylene blue (MB) dye from wastewater (WW). A chemical method was used for the preparation of NaIO4-NC. The prepared NaIO4-NC adsorbent was characterized by using X-ray diffraction (XRD), Fourier transform infrared (FTIR), scanning electron microscope (SEM), energy-dispersive X-ray (EDX), and Brunauer–Emmett–Teller (BET) instruments. Next, it was tested to the adsorption of MB dye from WW using batch experiments. The adsorption process was performed using Langmuir and Freundlich isotherm models with maximum adsorption efficiency (qmax) of 90.91 mg·g−1 and percent color removal of 78.1% at optimum 30 mg·L−1, 60 min., 1 g, and 8 values of initial concentration, contact time, adsorbent dose, and solution pH, respectively. Pseudo-second-order (PSO) kinetic model was well fitted for the adsorption of MB dye through the chemisorption process. The adsorption process was spontaneous and feasible from the thermodynamic study because the Gibbs free energy value was negative. After adsorption, the decreased values for physicochemical parameters of WW were observed in addition to the color removal. From the regeneration study, it is possible to conclude that NaIO4-NC adsorbent was recyclable and reused as MB dye adsorption for 13 successive cycles without significant efficient loss.


Processes ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 169
Author(s):  
Alvin Lim Teik Zheng ◽  
Supakorn Boonyuen ◽  
Teruhisa Ohno ◽  
Yoshito Andou

Fundamental studies involving divalent ion intercalated graphene-based hydrogel are still lacking in terms of their adsorption behavior towards dye pollutants. In this study, we prepared a self-assembled Mg2+ and Ca2+ intercalated reduced graphene hydrogel (rGH) using hydrothermal treatment to evaluate the intercalation impact on the adsorption capability towards cationic dyes, methylene blue and rhodamine B. The morphological, structural, thermal, and textural properties of the divalent ion intercalated reduced graphene hydrogels were studied using Fourier transform infrared spectrometer, thermogravimetric analysis, Raman spectroscopy, scanning electron microscope-energy dispersive spectroscopy, X-ray photoelectron spectroscopy, Brunauer–Emmett–Teller surface area analysis, and X-ray diffraction. The increased adsorption capacity of the divalent ion intercalated reduced graphene-based hydrogels towards the dye molecules resulted from the increase in the specific surface area and pore volume due to the Mg2+ and Ca2+ bridging that formed spaces between the graphene sheets framework. Adsorption kinetics and the equilibrium adsorption isotherm were fitted by a pseudo-second-order alongside intraparticle diffusion kinetic models and Langmuir isotherm respectively. In addition, the divalent ion intercalated reduced graphene hydrogel showed good generation after three cycles of simultaneous adsorption.


Sign in / Sign up

Export Citation Format

Share Document