scholarly journals Methylene Blue Dye Adsorption from Wastewater Using Hydroxyapatite/Gold Nanocomposite: Kinetic and Thermodynamics Studies

Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1403
Author(s):  
Kashma Sharma ◽  
Shreya Sharma ◽  
Vipasha Sharma ◽  
Pawan Kumar Mishra ◽  
Adam Ekielski ◽  
...  

The present work demonstrates the development of hydroxyapatite (HA)/gold (Au) nanocomposites to increase the adsorption of methylene blue (MB) dye from the wastewater. HA nanopowder was prepared via a wet chemical precipitation method by means of Ca(OH)2 and H3PO4 as starting materials. The biosynthesis of gold nanoparticles (AuNPs) has been reported for the first time by using the plant extract of Acrocarpus fraxinifolius. Finally, the as-prepared HA nanopowder was mixed with an optimized AuNPs solution to produce HA/Au nanocomposite. The prepared HA/Au nanocomposite was studied by using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and Scanning Electron Microscopy (SEM) with Energy Dispersive X-Ray Analysis (EDX) analysis. Adsorption studies were executed by batch experiments on the synthesized composite. The effect of the amount of adsorbent, pH, dye concentration and temperature was studied. Pseudo-first-order and pseudo-second-order models were used to fit the kinetic data and the kinetic modeling results reflected that the experimental data is perfectly matched with the pseudo-first-order kinetic model. The dye adsorbed waste materials have also been investigated against Pseudomonas aeruginosa, Micrococcus luteus, and Staphylococcus aureus bacteria by the agar well diffusion method. The inhibition zones of dye adsorbed samples are more or less the same as compared to as-prepared samples. The results so obtained indicates the suitability of the synthesized sample to be exploited as an adsorbent for effective treatment of MB dye from wastewater and dye adsorbed waste as an effective antibacterial agent from an economic point of view.


2021 ◽  
Author(s):  
BENSEDIRA Abderrahim ◽  
HADDAOUI Nacerddine ◽  
DOUFNOUNE Rachida ◽  
MEZIANE Ouahiba ◽  
N. S. Labidi

Abstract Conducting Polymeric composites have attracted great attention over the last years because of their potential uses in chemical, electronic and optical devices, and as catalysts as well as in adsorption processes. Chemical synthesis of polyaniline (PANI) and polyaniline-SiO2 composite and their adsorptive performance were reported in the present work. These materials were prepared and evaluated for their methylene blue (MB) dye adsorption characteristics from aqueous solution. Adsorption equilibrium kinetic and thermodynamic experiments of MB onto PANI and PANI/SiO2 were studied. The effects of initial dye concentration, contact time and temperature on the adsorption capacity of PANI/SiO2 for MB have been investigated. The pseudo-first order and pseudo-second order kinetic models were used to describe the kinetic data. It was found that adsorption kinetics followed the pseudo-second order at all of the studied temperatures. The Langmuir, Freundlich and Dubinin Raduschkevich adsorption models were used for the mathematical description and the fit obtained using the Dubinin Raduschkevich isotherm has a medium R2 value.



2016 ◽  
Vol 74 (10) ◽  
pp. 2437-2445 ◽  
Author(s):  
Carlos Alberto Policiano Almeida ◽  
Tânia Marina Palhano Zanela ◽  
Clodoaldo Machado ◽  
Juan Antônio Altamirano Flores ◽  
Luiz Fernando Scheibe ◽  
...  

An aluminosilicate waste (AW) was investigated as adsorbent for methylene blue (MB) dye. AW was characterized by petrography, X-ray diffractometry, X-ray fluorescence, scanning electron microscopy, thermogravimetry and zeta potential measurements. It was found that AW contains kaolinite, and other minor components such as quartz, muscovite, smectite, siderite, pyrite and organic compounds. The chemical composition of AW is mainly SiO2 (49%) and Al2O3 (23%) and it has negative superficial charge above pH 1.73. Adsorption of MB dye was studied in a batch system under different conditions of initial dye concentration, contact time and temperature. The isothermal data from batch experiments were fitted to Langmuir and Freundlich equations, with a better fit shown by the Langmuir isotherm equation. Also, pseudo-first-order, pseudo-second-order and intraparticle diffusion models were considered to evaluate the rate parameters. The experimental data fitted the pseudo-first-order kinetic model best. Thermodynamic parameters were calculated, showing the adsorption to be an endothermic yet spontaneous process, with the activation energy of +37.8 kJ mol–1. The results indicate that AW adsorbs MB efficiently, and can be employed as a low-cost alternative in wastewater treatment for the removal of cationic dyes.



2018 ◽  
Vol 18 (44) ◽  
pp. 5-11 ◽  
Author(s):  
Nizamettin Demirkıran ◽  
G D Turhan Özdemir ◽  
M Saraç ◽  
M Dardağan

In this study, the adsorption of methylene blue dye was examined by using pyrolusite ore as a low-cost alternative adsorbent source. Pyrolusite, which contains mainly MnO2, is a manganese ore. The effects of the initial concentration of dye, contact time, initial pH of solution, adsorbent dosage, stirring speed of solution, and average particle size of adsorbent on the adsorption of methylene blue were studied. It was found that the percentage of the adsorbed dye increased with increasing the amount of pyrolusite. While the initial dye concentration, initial pH, contact time, stirring speed, particle size, and adsorbent dosage were 25 ppm, 6, 90 min, 250 rpm, 63 µm, and 12 g/l, respectively, the efficiency of dye adsorption on pyrolusite ore was 99%. The isotherm and kinetic studies relating to this adsorption process were also made. It was found that the equilibrium data followed the Langmuir isotherm model while the kinetic of process could be described by the pseudo-second order kinetic model.



Author(s):  
Oluwadayo Francis Asokogene ◽  
Muhammad Abbas Ahmad Zaini ◽  
Misau Muhammad Idris ◽  
Surajudeen Abdulsalam ◽  
Aliyu El-Nafaty Usman

Abstract This study was aimed to evaluate the characteristics of chitosan from Pessu river crab shell and its derivatives as prospective adsorbent. The synthesized chitosan (CH) was modified with 10 % (w/v) oxalic acid (CHOx), while the composites (CHOx-ANL1, CHOx-ANL2 and CHOx-ANL3) were designated according to the amount of activated neem leave (ANL). The materials were characterized by Fourier transform infrared (FTIR), energy-dispersive X-ray (EDAX), X-ray diffraction (XRD), scanning electron microscope (SEM), Brunauer-Emmett-Teller (BET), thermal gravimetric (TGA) and methylene blue dye adsorption. The FTIR spectra of chitosan samples show the characteristics of primary and secondary amine/amide groups. The SEM images exhibit a tight, porous and fractured surface, which is covered with activated neem leave for the composites. The BET surface area of chitosan materials is in the increasing order of, CH < CHOx-ANL1 < CHOx-ANL2 < CHOx < CHOx-ANL3. CHOx-ANL3 displays a higher surface area of 389 m2/g, and 70.9 % mesoporosity. Despite its lower surface area of 258 m2/g (65.4 % mesoporosity), CHOx-ANL1 exhibits a greater methylene blue adsorption of 90.8 mg/g at dye concentration of 300 mg/L. The possible removal mechanisms include ionic interaction between dye molecules and functional groups, and surface adsorption due to the textural properties of chitosan samples. Chitosan from Pessu river crab shell and its derivatives are promising adsorbent candidate for dyes and heavy metals removal from water.



2020 ◽  
Vol 32 (6) ◽  
pp. 1361-1369
Author(s):  
Patience Mapule Thabede ◽  
Ntaote David Shooto ◽  
Thokozani Xaba ◽  
Eliazer Bobby Naidoo

Carbon from black cumin seeds was modified with 10 and 20% sulfuric acid to obtain the activated adsorbents. Pristine carbon from black cumin seeds, 10 and 20% H2SO4 activated carbon from black cumin seeds were labelled CBC, ACBC-10 and ACBC-20, respectively. The adsorbents were characterized by SEM, XRD, FTIR, TGA and BET. The adsorbents maximum trend for Cd(II) was ACBC-10 > ACBC-20 > CBC. The maximum capacity trend for methylene blue dye was ACBC-20 > ACBC-10 > CBC. The kinetic model best fitted pseudo second order for Cd(II) which gave r2 values of 0.991-0.998. The methylene blue fitted pseudo first order model with r2 values ranging from 0.993-0.997. Pseudo first order suggested that the adsorption mechanism for methylene blue onto adsorbents involved van der Waal forces of attraction. The equilibrium data fitted Langmuir isotherm model for CBC, ACBC-10 and ACBC-20 with r2 of 0.994 to 0.998 for the removal of methylene blue whilst the removal of Cd(II) followed Freundlich with r2 ranging from 0.992 to 0.997. This suggested that the different adsorption processes were involved between the adsorbate and the adsorbents. Gibb′s free energy (ΔGº) for Cd(II) and methylene blue onto CBC, ACBC-10 and ACBC-20 suggested that the reaction was spontaneous. The adsorption of Cd(II) and methylene blue was endothermic, positive values (ΔHº). This suggested that the enthalpy (ΔHº) had a weak interactive force process whose low energy is associated with electrostatic attraction.



2014 ◽  
Vol 970 ◽  
pp. 29-32 ◽  
Author(s):  
Pongsaton Amornpitoksuk ◽  
Sumetha Suwanboon

The co-effect of PO43- and I- on the formation of a heterosturucture photocatalyst in the Ag3PO4-AgI system was studied by the co-precipitation method between AgNO3 and the precipitating agent. The precipitating agent was prepared by varying the mole ratios between Na2HPO4 and KI. At 10 mol.% KI, the product showed the mixed phase between Ag3PO4 and un-identified phase. For 30 - 90 mol.% KI, the un-identified phase and AgI were detected in the x-ray diffraction patterns. The un-identified phase strongly adsorbed the methylene blue dye. The product prepared from 30 mol.% KI had the highest content of un-identified phase and also showed the highest degree of decolorization in the dark. The photocatalytic properties of products in this system were confirmed by the decolorization of methylene blue under visible illumination.



2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Md. Murshed Bhuyan ◽  
Nirmal Chandra Dafader ◽  
Kazuhiro Hara ◽  
Hirotaka Okabe ◽  
Yoshiki Hidaka ◽  
...  

Several kinds of acrylic-acid-grafted-starch (starch/AAc) hydrogels were prepared at room temperature (27°C) by applying 5, 10, 15, 20, and 25 kGy of gamma radiation to 15% AAc aqueous solutions containing 5, 7.5, and 15% of starch. With increment of the radiation dose, gel fraction became higher and attained the maximum (96.5%) at 15 kGy, above which the fraction got lowered. On the other hand, the gel fraction monotonically increased with the starch content. Swelling ratios were lower for the starch/AAc hydrogels prepared with higher gamma-ray doses and so with larger starch contents. Significant promotions of the swelling ratios were demonstrated by hydrolysis with NaOH:13632±10%for 15 kGy radiation-dosed [5% starch/15% AAc] hydrogel, while the maximum swelling ratio was ~200% for those without the treatment. The authors further investigated the availability of the starch/AAc hydrogel as an adsorbent recovering dye waste from the industrial effluents by adopting methylene blue as a model material; the hydrogels showed high dye-capturing coefficients which increase with the starch ratio. The optimum dye adsorption was found to be 576 mg per g of the hydrogel having 7.5 starch and 15% AAc composition. Two kinetic models, (i) pseudo-first-order and (ii) pseudo-second-order kinetic models, were applied to test the experimental data. The latter provided the best correlation of the experimental data compared to the pseudo-first-order model.



2015 ◽  
Vol 73 (4) ◽  
pp. 881-889 ◽  
Author(s):  
L. Khezami ◽  
Kamal K. Taha ◽  
Imed Ghiloufi ◽  
Lassaad El Mir

Herein the degradation of malachite green (MG) dye from aqueous medium by vanadium doped zinc oxide (ZnO:V3%) nanopowder was investigated. The specific surface area and pore volume of the nanopowder was characterized by nitrogen adsorption method. Batch experimental procedures were conducted to investigate the adsorption and photocatalytic degradation of MG dye. Adsorption kinetics investigations were performed by varying the amount of the catalyst and the initial dye concentrations. Adsorption and photocatalytic degradation data were modeled using the Lagergren pseudo-first-order and second-order kinetic equation. The results showed that the ZnO:V3% nanopowder was particularly effective for the removal of MG and data were found to comply with Lagergreen pseudo-first-order kinetic model.



2011 ◽  
Vol 396-398 ◽  
pp. 823-826
Author(s):  
Jie Cheng ◽  
Jian Zhang Li ◽  
Jun Bo Zhong ◽  
Wei Hu

Paralled flaw precipitation method has been employed to synthesize nanostructured ZnO. The prepared photocatalyst was characterized by BET, XRD. The paper reveals that Methyl Orange (MO) can be decolorized effectively in ZnO suspension system under UV irradiation. The optimal loading of photocatalyst in our experimental condition for the decolorization of MO is 1g/L. The present study, on the base of Langmuir-Hinshelwood mechanism, illustrates that the decolorization reaction is a pseudo first order kinetic model with the limiting rate constant of 8.48×10-2 mgL-1min-1 and equilibrium adsorption constant 0.335 L/mg, respectively.



2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Hizkeal Tsade Kara ◽  
Sisay Tadesse Anshebo ◽  
Fedlu Kedir Sabir ◽  
Getachew Adam Workineh

The study was focused on the preparation and characterizations of sodium periodate-modified nanocellulose (NaIO4-NC) prepared from Eichhornia crassipes for the removal of cationic methylene blue (MB) dye from wastewater (WW). A chemical method was used for the preparation of NaIO4-NC. The prepared NaIO4-NC adsorbent was characterized by using X-ray diffraction (XRD), Fourier transform infrared (FTIR), scanning electron microscope (SEM), energy-dispersive X-ray (EDX), and Brunauer–Emmett–Teller (BET) instruments. Next, it was tested to the adsorption of MB dye from WW using batch experiments. The adsorption process was performed using Langmuir and Freundlich isotherm models with maximum adsorption efficiency (qmax) of 90.91 mg·g−1 and percent color removal of 78.1% at optimum 30 mg·L−1, 60 min., 1 g, and 8 values of initial concentration, contact time, adsorbent dose, and solution pH, respectively. Pseudo-second-order (PSO) kinetic model was well fitted for the adsorption of MB dye through the chemisorption process. The adsorption process was spontaneous and feasible from the thermodynamic study because the Gibbs free energy value was negative. After adsorption, the decreased values for physicochemical parameters of WW were observed in addition to the color removal. From the regeneration study, it is possible to conclude that NaIO4-NC adsorbent was recyclable and reused as MB dye adsorption for 13 successive cycles without significant efficient loss.



Sign in / Sign up

Export Citation Format

Share Document