Aerobic sequential batch reactor for domestic sewage treatment: parametric optimization and kinetics studies

Author(s):  
Neela Acharya ◽  
Vijay Kumar ◽  
Vandana Gupta ◽  
Chandrakant Thakur ◽  
Parmesh Kumar Chaudhari

Abstract Domestic sewage (DS) was first treated in aerobic sequential batch reactor (SBR). In order to increase the treated water quality, DS from SBR was further treated using electrocoagulation (EC) and Ion exchange (IE) process. In the SBR study, process parameters such as hydraulic retention time (HRT) and reactor fill time (t f ) was optimized at various volume exchange ratio (VER) of 0.534, 0.4, 0.266, and 0.133. The best HRT and t f were observed to be 0.78 day (d) and 2 h, respectively, providing 72.37% chemical oxygen demand (COD) reduction (initial value of COD = 270 mg/dm3). Kinetics of biodegradation in SBR was also studied. The second stage treatment was performed in EC reactor at 1 ampere (A) current for 30 min electrolysis time (t R). EC reactor, further reduced COD and biological oxygen demand (BOD) up to 72 and 21 mg/dm3 from its average initial COD and BOD of 94 and 23 mg/dm3, respectively. Second stage treatment in IE process reduced hardness, sulphate, and phosphate up to 15, 0.05, and 0.13 mg/dm3 from its initial value 350, 5.48 and 1.16 mg/dm3, respectively. The treated water can be used as potable water after disinfection as its water quality is near to river water.

2019 ◽  
Vol 8 (3) ◽  
pp. 6808-6814

The pollutants contained in domestic sewage (DS) was separated using coagulation in first stage followed by ion exchange (IE) in second stage. The coagulants FeCl3 , Alum and Al2 (SO4 )3 .16H2O were used for treatment. Among these, performance of Al2 (SO4 )3 .16H2O and FeCl3 was equally good in term of chemical oxygen demand (COD) removal at their optimum pH and optimum dose. COD values were reduced to 78 and 80 mg/dm3 with Al2 (SO4 )3 .16H2O and FeCl3 from initial value 256 mg/dm3 . The FeCl3 coagulant treated DS was further treated using IE process, which was able to reduce hardness upto 10 mg/dm3 from initial value 580 mg/dm3 . Settling of FeCl3 treated sludge was found to best and design of settler has been presented from experimental data.


2016 ◽  
Vol 74 (7) ◽  
pp. 1509-1517 ◽  
Author(s):  
Linan Zhu ◽  
Hailing He ◽  
Chunli Wang

The hybrid membrane bioreactor (HMBR) has been applied in ship domestic sewage treatment under high volumetric loading for ship space saving. The mechanism and influence factors on the efficiency, including hydraulic retention time (HRT), dissolved oxygen (DO) of chemical oxygen demand (COD) removal were investigated. The HMBR's average COD removal rate was up to 95.13% on volumetric loading of 2.4 kgCOD/(m3•d) and the COD concentration in the effluent was 48.5 mg/L, far below the International Maritime Organization (IMO) discharge standard of 125 mg/L. DO had a more remarkable effect on the COD removal efficiency than HRT. In addition, HMBR revealed an excellent capability of resisting organics loading impact. Within the range of volumetric loading of 0.72 to 4.8 kg COD/(m3•d), the effluent COD concentration satisfied the discharge requirement of IMO. It was found that the organics degradation in the aeration tank followed the first-order reaction, with obtained kinetic parameters of vmax (2.79 d−1) and Ks (395 mg/L). The original finding of this study had shown the effectiveness of HMBR in organic contaminant degradation at high substrate concentration, which can be used as guidance in the full scale of the design, operation and maintenance of ship domestic sewage treatment devices.


1990 ◽  
Vol 22 (7-8) ◽  
pp. 161-170
Author(s):  
I. Sekoulov ◽  
R. Addicks ◽  
J. Oles

Enlargement and/or upgrading of already existing sewage treatment plants will bring problems to design and operation. However, this can be solved even in some complicated configuration of the treatment system, as will be demonstrated. Having an activated sludge system for BOD removal (first stage) followed by a trickling filter for nitrification (second stage), denitrification of the effluent without an external H donator is hard to achieve. In domestic sewage treatment, denitrification is usually carried out with BOD as carbon source. Additionally to the principal question of pre- or post denitrification and the related effects on the effluent quality (BOD, COD, NH4) pre-denitrification in the given case would be highly ineffective and uneconomical (large hydraulic loads). The paper presents a system using thickened sludge from the activated sludge sedimentation as H donator. The sludge has been successfully used to denitrify the trickling filter effluent. For the design of the post-denitrification stage, the necessary volume of sludge could be determined together with the volume of the denitrification reactor. Results of the pilot-plant studies are presented.


2014 ◽  
Vol 69 (7) ◽  
pp. 1410-1418 ◽  
Author(s):  
Weijie Guo ◽  
Zhu Li ◽  
Shuiping Cheng ◽  
Wei Liang ◽  
Feng He ◽  
...  

To examine the performance of a constructed wetland system on stormwater runoff and domestic sewage (SRS) treatment in central east China, two parallel pilot-scale integrated constructed wetland (ICW) systems were operated for one year. Each ICW consisted of a down-flow bed, an up-flow bed and a horizontal subsurface flow bed. The average removal rates of chemical oxygen demand (CODCr), total suspended solids (TSS), ammonia (NH4+-N), total nitrogen (TN) and total phosphorus (TP) were 63.6, 91.9, 38.7, 43.0 and 70.0%, respectively, and the corresponding amounts of pollutant retention were approximately 368.3, 284.9, 23.2, 44.6 and 5.9 g m−2 yr−1, respectively. High hydraulic loading rate (HLR) of 200 mm/d and low water temperatures (<15 °C) resulted in significant decrease in removals for TP and NH4+-N, but had no significant effects on removals of COD and TSS. These results indicated that the operation of this ICW at higher HLR (200 mm/d) might be effective and feasible for TSS and COD removal, but for acceptable removal efficiencies of nitrogen and phosphorus it should be operated at lower HLR (100 mm/d). This kind of ICW could be employed as an effective technique for SRS treatment.


2012 ◽  
Vol 518-523 ◽  
pp. 1969-1972
Author(s):  
Xiao Fang Yue ◽  
Bo Liu ◽  
Lin Fang ◽  
Chang Kun Liu

In this paper, the performance of the constructed rapid infiltration system ( CRI ) for removal of organic pollutants of domestic sewage was investigated. The results showed that the system had higher efficiency of CODCr removal. The removal rate of CODCr was 86.1% by constructed rapid infiltration system without carbonized sludge , 91.8% with carbonized sludge. The system overcomes the disadvantage of traditional wastewater rapid infiltration land treatment system ( RI ) that the hydraulic load is low, but retains the advantages that the solution process are the low cost, the ease of processing, less energy consumption and good water quality.


2018 ◽  
Vol 28 (3) ◽  
pp. 121-131 ◽  
Author(s):  
Anita Jakubaszek ◽  
Artur Stadnik

Abstract The article analyzes the effectiveness of individual Actibloc wastewater treatment plants (produced by Sotralentz) working in the technology of low-rate activated sludge in the Sequential Batch Reactor (SBR) system. The assessment of the effectiveness of household wastewater treatment plants was made on the basis of pollutants: BOD5, COD, total suspended solids, total nitrogen and total phosphorus. The research objects were four household sewage treatment plants located in: Lubań, Kłębanowice, Stara Rzeka and Kościan. The efficiency of removing pollutants in the examined facilities was in the range of: BOD5 92.2 ÷ 97.2%, COD 82.6 ÷ 89.9%, total suspended solids 90.2 ÷ 96.2%, total nitrogen 50.8 ÷ 83.1%, total phosphorus 46.5 ÷ 73.6%. The treated wastewater met the requirements set out in the Regulation of the Minister of the Environment on the conditions to be met when discharging sewage into water or soil, and on substances particularly harmful to the aquatic environment (Journal of Laws 2014, item 1800) in terms of indicators such as BOD5, COD, total suspended solids and total nitrogen. The effectiveness of phosphorus removal in the studied treatment plants was much lower.


2019 ◽  
Vol 268 ◽  
pp. 06007
Author(s):  
Jahziel Lantin ◽  
Jeremy Ynnos Abenoja ◽  
Jason Ly ◽  
Cheenee Marie Castillones ◽  
Arnel Beltran ◽  
...  

Assessment and upgrade of existing sewage treatment plants (STPs) are necessary due to the revision of the existing effluent regulations which now monitors nutrients including ammonia, nitrate and phosphates. The aim of this study is the performance evaluation of four sequencing batch reactor (SBR) type of STP based on the following parameters: biological oxygen demand (BOD), chemical oxygen demand (COD), total suspended solids (TSS), nitrates, ammonia, phosphates and pH; and their potential upgrade based on the revised regulations stated in DAO 2016-08. Four sequencing batch reactor (SBR) type of STP were assessed for 12 weeks for this study. Results showed noncompliance with nutrient levels, thus upgrade is necessary. Analytical Hierarchy Process (AHP), a Multi-Criteria-Analysis (MCA) tool, was used to select the best option for upgrade among options that include (1) additional SBR tank, (2) diverting wastewater to another treatment facility, and (3) converting the SBR into membrane bioreactor (MBR). Considering the criterion for upgrade, option 2 was the most preferred decision followed by option 1 then option 3.


Author(s):  
Hamidi Aziz ◽  
Nur Puat ◽  
Motasem Alazaiza ◽  
Yung-Tse Hung

In this study, a sequential batch reactor (SBR) with different types of fibers was employed for the treatment of poultry slaughterhouse wastewater. Three types of fibers, namely, juite fiber (JF), bio-fringe fiber (BF), and siliconised conjugated polyester fiber (SCPF), were used. Four SBR experiments were conducted, using the fibers in different reactors, while the fourth reactor used a combination of these fibers. The treatment efficiency of the different reactors with and without fibers on biochemical oxygen demand (BOD), chemical oxygen demand (COD), ammonia-nitrogen (NH3-N), phosphorus (P), nitrite (NO2), nitrate (NO3), total suspended solids (TSS), and oil-grease were evaluated. The removal efficiency for the reactors with fibers was higher than that of the reactor without fibers for all pollutants. The treated effluent had 40 mg/L BOD5 and 45 mg/L COD with an average removal efficiency of 96% and 93%, respectively, which meet the discharge limits stated in the Environmental Quality Act in Malaysia.


2010 ◽  
Vol 148-149 ◽  
pp. 259-266
Author(s):  
Jin Ping Li ◽  
Jin Hua Gan ◽  
Ying Ming Chen

This paper presents a new way of recycling aluminum and iron in boiler slag derived from coal combustion plants for the production of a sulfate-based complex coagulant containing ferric sulfate and aluminum sulfate. The boiler slag sample was determined for more complete characterization by means of scanning electron microscopy(SEM), X-ray diffraction(XRD), X-ray fluorescence(XRF) and other techniques. An analysis for the boiler slag sample collected from Baotou Steel Plant located in Inner Mongolia, PR China showed that the quantity of iron and aluminum oxides, in general, accounted for about 35% of the boiler slag. XRD analysis indicates that predominate minerals such as kaolinite, quartz, calcium silicide, hematate and metakoalin exist in this boiler slag. This boiler salg was evaluated to determine the efficiency of converting the iron and aluminum components of the material into a sulfate-based complex coagulant when heated with sulfuric acid at different temperatures and reaction times. The maximum concentrations of Fe3+ and Al3+ in the complex coagulant prepared from the boiler slag were obtained at 130 and after 3 h of reaction time. These concentrations were 0.04 M Fe3+ and 0.46 M Al3+, respectively. The corresponding conversion efficiencies of aluminum and iron were 66.2 and 95.0% in the boiler slag, respectively. Finally, the prepared sulfate-based complex coagulant proved to be an effective agent for reducing the turbidity and chemical oxygen demand(COD) of a typical domestic sewage sample.


Sign in / Sign up

Export Citation Format

Share Document