Research on Soil Infiltration Systems for Domestic Sewage Treatment

2012 ◽  
Vol 518-523 ◽  
pp. 1969-1972
Author(s):  
Xiao Fang Yue ◽  
Bo Liu ◽  
Lin Fang ◽  
Chang Kun Liu

In this paper, the performance of the constructed rapid infiltration system ( CRI ) for removal of organic pollutants of domestic sewage was investigated. The results showed that the system had higher efficiency of CODCr removal. The removal rate of CODCr was 86.1% by constructed rapid infiltration system without carbonized sludge , 91.8% with carbonized sludge. The system overcomes the disadvantage of traditional wastewater rapid infiltration land treatment system ( RI ) that the hydraulic load is low, but retains the advantages that the solution process are the low cost, the ease of processing, less energy consumption and good water quality.

2015 ◽  
Vol 737 ◽  
pp. 557-560
Author(s):  
Hui Yuan Zhong ◽  
Guan Yi Liu ◽  
Jun Xia Li ◽  
Hao Wang

This study used coagulation - ultrafiltration technology for domestic sewage treatment, which was used widely in water supply and secondary treatment with sewage, in order to achieve high efficiency, low-cost, integrated treatment of domestic sewage treatment. This article chooses fly ash coagulant is not only simple preparation process, low cost, and with the traditional aluminum chloride and ferric chloride coagulation effect. The research results show that the coagulation can make the organic particles size distribution to move to larger particles area and significantly reduce colloidal substance. Ultrafiltration membrane system can further remove the coagulation treatment failed to completely remove polymer and part in the process of low molecular substances, to achieve high organic matter removal efficiency. The backwash of ultrafiltration membrane can make membrane flux recovery by about 80%. This system of SS can remove more than 95%, COD removal rate can reach 60% ~ 70%.


Author(s):  
Devi Buehler ◽  
Nadine Antenen ◽  
Matthias Frei ◽  
Christoph Koller ◽  
Diederik P. L. Rousseau ◽  
...  

AbstractIn the scope of this study, a pilot facility for the recycling of laundry effluent was developed and tested. With the aim to enable nearly complete energy and water self-sufficiency, the system is powered by a photovoltaic plant with second-life batteries, treats the wastewater within the unit and constantly reuses the treated wastewater for washing in a closed cycle. The technology for wastewater treatment is based on a low-tech approach consisting of a physical/mechanical pre-treatment and biological treatment in trickling filter columns. The treatment process is operated in batch mode for a capacity of five washing cycles per day. During five weeks of operation water quality, energy consumption and production, water losses and washing performance were monitored. The system recovered 69% of the used water for the washing machine while treating the wastewater to the necessary water quality levels. The average COD removal rate per cycle was 92%. Energy analysis was based on modelled data of the monitored energy consumption. With the current set-up, an internal consumption rate of 80% and self-sufficiency of 30% were modelled. Future developments aim at increasing water and energy self-sufficiency and optimizing the water treatment efficiency.


2013 ◽  
Vol 295-298 ◽  
pp. 1057-1061 ◽  
Author(s):  
Chang Bing Ye ◽  
Zhi Ming Zhou ◽  
Ke Zhao ◽  
Qin Liu

To solve the problem of short-circuit of individual current constructed wetland, a baffled constructed wetland was designed and applied to treat domestic sewage by our research group. The wetland plants were composed of Eichhormia crassipes, Oenanthe javanica, Cyperusalternifolius, Phragmites communis and Aquatic. The results of 18 month indicated that the optimal hydraulic load of baffled constructed wetland was 2.0~2.2 m3/(m2•d). At the hydraulic load of 2.0m3/(m2•d), the COD, TN and TP removal rates of baffled constructed wetland could be over 76.40%, 76.12%, 65.37%, respectively, at 24°C. When the temperature decreased to 12°C, the COD, TN, TP removal rates of system decreased to 67.56%、62.75% and 61.33%, respectively; The SS removal rate of the first 6 compartments was about 79.5% and that of system could maintain 87.18% during the operation of system. Based on the results of trial, the mechanisms of extending the baffled constructed wetland's operational life was owed to high efficient SS removal rate of the first 6 compartments which was used as constructed wetland and anaerobic baffled reactor (ABR). As a result, the long-term stable operation of system in treatment of domestic sewage was explained with extending about 5 times service life than that of individual current constructed wetland. The mechanisms of higher efficiency of baffled constructed wetland in treatment of domestic sewage were owed to the longer flow line of system and the up-down flow of domestic sewage makes pollutant more intimate contact with roots of wetland plants.


2016 ◽  
Vol 74 (7) ◽  
pp. 1509-1517 ◽  
Author(s):  
Linan Zhu ◽  
Hailing He ◽  
Chunli Wang

The hybrid membrane bioreactor (HMBR) has been applied in ship domestic sewage treatment under high volumetric loading for ship space saving. The mechanism and influence factors on the efficiency, including hydraulic retention time (HRT), dissolved oxygen (DO) of chemical oxygen demand (COD) removal were investigated. The HMBR's average COD removal rate was up to 95.13% on volumetric loading of 2.4 kgCOD/(m3•d) and the COD concentration in the effluent was 48.5 mg/L, far below the International Maritime Organization (IMO) discharge standard of 125 mg/L. DO had a more remarkable effect on the COD removal efficiency than HRT. In addition, HMBR revealed an excellent capability of resisting organics loading impact. Within the range of volumetric loading of 0.72 to 4.8 kg COD/(m3•d), the effluent COD concentration satisfied the discharge requirement of IMO. It was found that the organics degradation in the aeration tank followed the first-order reaction, with obtained kinetic parameters of vmax (2.79 d−1) and Ks (395 mg/L). The original finding of this study had shown the effectiveness of HMBR in organic contaminant degradation at high substrate concentration, which can be used as guidance in the full scale of the design, operation and maintenance of ship domestic sewage treatment devices.


2021 ◽  
Vol 21 (7) ◽  
pp. 3882-3886
Author(s):  
Yong-Wook Jung ◽  
Jong Kyu Kim

In this study, nano-sized low cost titanium dioxide (TFS) was prepared using sludge from sewage treatment and performance was verified. To remove air pollutants, the photocatalytic degradation of methylene blue and efflorescence characteristics is assessed according to the mixing ratio of the nano-sized TFS by applying them to concrete sidewalk blocks. The photocatalytic degradation performance of concrete sidewalk blocks shows that the methylene blue removal rate of specimens containing 2.5%, 5%, and 10% of nano-sized TFS is 29%, 27%, and 38%, respectively. When the nano-sized TFS is mingled on the surface of the sidewalk block, the performance of anti-corrosion and antifouling showed excellency mainly due to the moisture blocking derived by the antifouling function of photocatalysts.


2012 ◽  
Vol 573-574 ◽  
pp. 511-515 ◽  
Author(s):  
Peng Huang ◽  
Yao Guang Guo ◽  
Xiao Yi Lou ◽  
Xue Wu Yuan ◽  
Shuang Jie Xu ◽  
...  

Due to the relatively unprogressive economic and social development of Songjiang rural areas of Shanghai city in China, the degree of rural domestic sewage treatment was relatively weak and hysteretic. The rural sewage treatment systems of Songjiang district were investigated through field survey. Finally, the systems of soil infiltration-constructed wetland and combinatorial biofilter, with obvious advantages, were proposed to popularize in Songjiang rural areas more suitably.


2011 ◽  
Vol 6 (3) ◽  
Author(s):  
C. T. Avellán ◽  
D. P. L. Rousseau ◽  
P. N. L. Lens

The 3600 dairy farms in south-western Uruguay, with about 750,000 cows in 2008, play an important economic role. Only about 200 of the farms have a sewage treatment system, since no legal regulations for the disposal of effluents exist, the cost of construction is high and neither direct benefits nor incentives are given. The current systems are mainly lagoons that often lack maintenance, resulting in the eutrophication of rivers. One of our goals was to implement a low cost, robust surface flow constructed wetland using native plants, in order to test the acceptance and willingness to pay of the farmers and to see if the effluent water quality met the national standards even if operating under the lack of maintenance. Within a small catchment, 6 farmers attended a seminar series on water(shed) quality, importance of wetlands and sewage treatment options, explaining the functioning of constructed wetlands and the costs of construction. One of the farmers decided to construct a double lagoon system followed by a surface flow CW using Scirpus americanus. However, construction of the ponds occurred by the farmer himself resulting in inadequate dimensioning. The exceptionally dry summer 2008/2009 also delayed planting but by now plants have established themselves and other emergent macrophytes have followed. So far visual water quality as well as biodiversity has improved. Furthermore, farmers and technicians have become interested in the use of CW and other implementations are envisioned. Also, the legislation on dairy farm effluent is about to change which will boost the necessity for all kinds of sewage systems.


2020 ◽  
Vol 167 ◽  
pp. 01009
Author(s):  
Qin Cai ◽  
Hui-qiang Li ◽  
Ping Yang

A continuous flow chemical reactor was constructed to study the dephosphorization effect on the effluent of the oxygen-limited internal-loop fluidized membrane bioreactor (IF-MBR) for domestic sewage treatment. Removal effect of total phosphorus (TP) by four coagulants of AlCl3, FeCl3, polyaluminum ferric chloride (PAFC) and polyaluminium chloride (PAC) was evaluated. Results showed that when the ratio of coagulants to TP was 5 (coagulants in terms of Fe and Al), the removal efficiency of TP by FeCl3 was 92.5% and the addition of FeCl3 resulted in an increase in the chromaticity of the effluent. PAC and PAFC had good removal of TP, and the removal percentage achieved 96.2 and 97.4, respectively. However, the flocs they produced were small and light, and the performance in settlement was poor. AlCl3 performed well as a phosphorus removal agent, the removal rate of TP reached 97.4%, and the flocs were large and dense. Based on this, AlCl3 was the best choice for IF-MBR and then the experiment further optimized the Al/P ratio. Results showed that when the Al/P ratio was above 1:1, the effluent TP concentration was lower than 1mg/L; when the ratio was higher than 2.5:1, the effluent TP was lower than 0.5mg/L.


2012 ◽  
Vol 178-181 ◽  
pp. 376-379
Author(s):  
Fang Li ◽  
Zeng Lu Qi

This paper adopted a 3-stage rotating biological contactor (RBC), while the operating parameters could be controlled properly, this kind of RBC can obtain better removal effect in domestic sewage treatment. At 25oC, when hydraulic retention time (HRT) is 4h ,6h,8h,10h and 12h ,removal rate of COD is 65.14%,86.10%,89.82%,85.93% and 78.58%.HRT fixes on 8h, removal rate of NH3 –N is 75% after adjusting alkalinity. When rotating rate of RBC is 4,6,8,10,12 and 14 r/min, the removal rate of TN is 53.88%,56.78%,60.03%,58.49%,55.32% and 54.87%.RBC also has a good removal efficiency of TP and obtains the removal rate of TP 45%.There is good prospect in domestic sewage treatment with RBC.


1998 ◽  
Vol 38 (8-9) ◽  
pp. 189-195 ◽  
Author(s):  
Ricardo Franci Gonçalves ◽  
Vera Lúcia de Araújo ◽  
Carlos Augusto L. Chernicharo

This paper presents exploratory results on the association of an Upflow Anaerobic Sludge Blanket - UASB reactor (46 L) and a submerged aerated biofilter – BF (6.3 L) for domestic sewage treatment. The experimental period extended for 322 days, during which the hydraulic and organic loads were gradually increased in both reactors. Having the UASB as a reference, the following hydraulic loads were tested: 0.4 m3/m2.h (θ = 16 h); 0.6m3/m2.h (θ = 10h); 0.8 m3/m2.h (θ = 8 h); 1.0 m3/m2.h (θ = 6 h) and 1.45 m3/m2.h (θ = 4h). During the experiments carried out with the UASB reactor operating at a hydraulic detention time of 6 hours, related to a θ < 11′ in the granular media of the BF, the mean removal efficiency in terms of SS, BOD5 and COD, in both reactors, were respectively 94%, 96% and 91%. The final effluent, related to the BF effluent, presented the following mean characteristics: SS = 10 mg/L, BOD5 = 9 mg/L and COD = 38 mg/L. The results obtained in the last phase of the experiments, when the hydraulic load in the UASB reactor reached 1.45 m3/m2.h (θ = 4h), were similar to those obtained in the previous phase. These results demonstrate that submerged aerated biofilters can be considered a viable alternative for the post-treatment of effluents from UASB reactors treating domestic sewage. These reactors are capable of being operated with very short hydraulic detention times.


Sign in / Sign up

Export Citation Format

Share Document