Asynchronous Method for Frequency Regulation by Dispersed Plug-in Electric Vehicles

Author(s):  
Yonghong Kuang ◽  
Canbing Li ◽  
Bin Zhou ◽  
Yijia Cao ◽  
Hanyu Yang ◽  
...  

Abstract:Plug-in electrical vehicles (PEVs) can participate in frequency regulation (FR) in electric power systems under the framework of vehicle-to-grid (V2G) technology. With a growing number of electrical vehicles (EVs), a greater number of distributed electrical vehicle (EV) chargers may change charge or discharge power simultaneously to participate in FR, resulting in over response. In this paper, considering the over-response and equality issues, an asynchronous method for dispersed PEVs participation in FR is proposed. PEVs participate in FR with the same set of parameters. Over-response can be avoided during the process of FR. Equality enables the dispersed PEVs to participate in FR with the same probability. The presented method empowers PEVs to actively participate in FR without a control centre or a communication network. Simulation results demonstrate the validity of the presented method in different operational scenarios.

2012 ◽  
Vol 588-589 ◽  
pp. 1640-1643
Author(s):  
Shu Lei Deng ◽  
Bao Ping Liu ◽  
An Jun Li ◽  
Xiong Zhou ◽  
Yu Xiang Huang

High renewable energy penetration in power systems may bring a series of problems such as frequency fluctuations. Plug-in electric vehicles (PEVs) and controllable loads have been shifting into focus for this. A dynamic vehicle-to-grid (V2G) model with feedback control is proposed by considering the battery charging/discharging characteristics and the dynamic model of frequency regulation with PEVs and controllable loads for a single area is established. Simulation results demonstrate that the application of PEVs and controllable loads can relief the frequency refutation due to the randomness of renewable energy sources.


2018 ◽  
Vol 9 (2) ◽  
pp. 57-72
Author(s):  
Vlado Popović ◽  
Borut Jereb ◽  
Milorad Kilibarda ◽  
Milan Andrejić ◽  
Abolfazl Keshavarzsaleh ◽  
...  

Abstract Improvements in battery technology make electric vehicles more and more suitable for the use as electricity storages. Many benefits could be achieved by using electric vehicles for storing electricity in their batteries. This paper talks about the idea of electric vehicles as electricity storages in electric power systems. The idea has a great number of supporters, but also a significant part of the professional community believes that is unfeasible. This paper is not classified in either side and strives to give a realistic picture of this idea. For this purpose, findings from papers published in scientific journals are mainly used. There is also some information from websites, mainly for some technical issues. Partly, the opinions of the authors are present. Specificities of EVs and EPSs that enabled the birth of this idea are explained along with proposed concepts through which the idea can be implemented. Keeping with the vehicle to grid concept, issues about the implementation of the idea are considered. Achievements in the practical realization of the idea are also presented.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1090
Author(s):  
Charilaos Latinopoulos ◽  
Aruna Sivakumar ◽  
John W. Polak

The recent revolution in electric mobility is both crucial and promising in the coordinated effort to reduce global emissions and tackle climate change. However, mass electrification brings up new technical problems that need to be solved. The increasing penetration rates of electric vehicles will add an unprecedented energy load to existing power grids. The stability and the quality of power systems, especially on a local distribution level, will be compromised by multiple vehicles that are simultaneously connected to the grid. In this paper, the authors propose a choice-based pricing algorithm to indirectly control the charging and V2G activities of electric vehicles in non-residential facilities. Two metaheuristic approaches were applied to solve the optimization problem, and a comparative analysis was performed to evaluate their performance. The proposed algorithm would result in a significant revenue increase for the parking operator, and at the same time, it could alleviate the overloading of local distribution transformers and postpone heavy infrastructure investments.


2014 ◽  
Vol 2014 ◽  
pp. 1-7
Author(s):  
Qingshan Xu ◽  
Yujun Liu ◽  
Maosheng Ding ◽  
Pingliang Zeng ◽  
Wei Pan

Electric vehicles (EVs) are developing remarkably fast these years which makes the technology of vehicle-to-grid (V2G) easier to implement. Peak load shifting (PLS) is an important part of V2G service. A model of EVs’ capacity in V2G service is proposed for the research on PLS in this paper. The capacity is valued in accordance with three types of situations. Based on the model, three different scenarios are suggested in order to evaluate the capacity with MATLAB. The evaluation results indicate that EVs can provide potential energy to participate in PLS. Then, the principle of PLS with EVs is researched through the analysis of the relationship between their power and capacity. The performance of EVs in PLS is also simulated. The comparison of two simulation results shows that EVs can fulfill the request of PLS without intensely lowering their capacity level.


2013 ◽  
Vol 676 ◽  
pp. 227-230
Author(s):  
Qi Liang Zhang ◽  
Ping Wang ◽  
Liu Yang

In this paper, a new topology of compensated AC regulated power supply (ACRPS) in electric power systems based on a high-frequency isolated transformer (HFIT) is proposed. In order to overcome the slow response and low accuracy of the existing ACRPS, the phase shift regulating control (PSRC) based on instantaneous value of voltage single closed loop is applied as well as the software phase locked loop (SPLL). The proposed ACRPS has been simulated in the case of the voltage fluctuation, harmonics and frequency shift with Matlab. The simulation results show that output voltage precision is controlled within 0.5% and total harmonic distribution (THD) can be limited to less than 1%. In a word, the feasibility of the proposed ACRPS is effectively verified.


2021 ◽  
Vol 1 (1) ◽  
pp. 1-7
Author(s):  
Ali Feliachi

This paper describes some of the challenges that face the operation of future electric power systems. These systems are becoming more flexible and agile. Their physical structures and connections are continuously changing as microgrids, electric vehicles, and other generation and storage devices are connected/disconnected from the grid, which result in new challenges for the operation, management, and control of the systems of the future that incorporate active participation of the consumers, and high penetration of intermittent nature renewable resources such as wind and solar.


Energetika ◽  
2016 ◽  
Vol 62 (1-2) ◽  
Author(s):  
Hitesh Dutt Mathur ◽  
Yogesh Krishan Bhateshvar

In a smart grid scenario, penetration of large scale renewable energy sources is increasing rapidly. Even at global level, serious discussions are being done to reduce carbon emission. In order to achieve this goal of cleaner and greener environment for newer generations, fossil fuel based vehicles are being replaced with electric vehicles. This concept of having more electric vehicles will not only control pollution level but also supply electrical power back to the grid when have surplus power stored. It is going to be a win-win situation for both consumers and the grid. The concept termed as Vehicle-to-Grid (V2G) is explored for frequency regulation aspect in a multi-generation power network in this paper. When established automatic generation control (AGC) in interconnected power system is not sufficient to manage balance between demand and supply, vehicle energy storage is considered a viable option for a shortterm active power support in order to bring frequency back to normal. In energy storage possibilities, super conducting magnetic energy storage, ultra-capacitor, etc. are primarily discussed. This paper focuses on an integrated model of vehicle-to-grid (V2G) and wind power as alternatives to supply instant power to regulate frequency when the  system is subjected to sudden perturbation. APSO (adaptive particle swarm optimization) optimized fuzzy logic controller is used to intelligently suppress frequency and tie-line power oscillations. Results obtained are comprehensively presented and discussed in achieving power-frequency balance. MATLAB/Simulink is used for the simulation purpose.


Sign in / Sign up

Export Citation Format

Share Document