Simultaneous Wavelength and Power Stabilization of a GaAlAs Semiconductor Laser Applying a Single Detector Scheme

1984 ◽  
Vol 5 (2) ◽  
Author(s):  
O. Strobel

SummaryA new detection method has been realized for laser wavelength and power control. A single detector scheme gives simultaneous response of occuring changes in the two laser output parameters of interest. Experimental results showing a wavelength and power stabilization of 10

2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Tao Xiang ◽  
Tao Li ◽  
Mao Ye ◽  
Zijian Liu

Pedestrian detection with large intraclass variations is still a challenging task in computer vision. In this paper, we propose a novel pedestrian detection method based on Random Forest. Firstly, we generate a few local templates with different sizes and different locations in positive exemplars. Then, the Random Forest is built whose splitting functions are optimized by maximizing class purity of matching the local templates to the training samples, respectively. To improve the classification accuracy, we adopt a boosting-like algorithm to update the weights of the training samples in a layer-wise fashion. During detection, the trained Random Forest will vote the category when a sliding window is input. Our contributions are the splitting functions based on local template matching with adaptive size and location and iteratively weight updating method. We evaluate the proposed method on 2 well-known challenging datasets: TUD pedestrians and INRIA pedestrians. The experimental results demonstrate that our method achieves state-of-the-art or competitive performance.


Author(s):  
Shiyang Dong ◽  
Takafumi Matsumaru

AbstractThis paper shows a novel walking training system for foot-eye coordination. To design customizable trajectories for different users conveniently in walking training, a new system which can track and record the actual walking trajectories by a tutor and can use these trajectories for the walking training by a trainee is developed. We set the four items as its human-robot interaction design concept: feedback, synchronization, ingenuity and adaptability. A foot model is proposed to define the position and direction of a foot. The errors in the detection method used in the system are less than 40 mm in position and 15 deg in direction. On this basis, three parts are structured to achieve the system functions: Trajectory Designer, Trajectory Viewer and Mobile Walking Trainer. According to the experimental results,we have confirmed the systemworks as intended and designed such that the steps recorded in Trajectory Designer could be used successfully as the footmarks projected in Mobile Walking Trainer and foot-eye coordination training would be conducted smoothly.


2012 ◽  
Vol 542-543 ◽  
pp. 937-940
Author(s):  
Ping Shu Ge ◽  
Guo Kai Xu ◽  
Xiu Chun Zhao ◽  
Peng Song ◽  
Lie Guo

To locate pedestrian faster and more accurately, a pedestrian detection method based on histograms of oriented gradients (HOG) in region of interest (ROI) is introduced. The features are extracted in the ROI where the pedestrian's legs may exist, which is helpful to decrease the dimension of feature vector and simplify the calculation. Then the vertical edge symmetry of pedestrian's legs is fused to confirm the detection. Experimental results indicate that this method can achieve an ideal accuracy with lower process time compared to traditional method.


2013 ◽  
Vol 378 ◽  
pp. 478-482
Author(s):  
Yoshihiro Mitani ◽  
Toshitaka Oki

The microbubble has been widely used and shown to be effective in various fields. Therefore, there is an importance of measuring accurately its size by image processing techniques. In this paper, we propose a detection method of microbubbles by the approach based on the Hough transform. Experimental results show only 4.49% of the average error rate of the undetected microbubbles and incorrectly detected ones. This low percentage of the error rate shows the effectiveness of the proposed method.


2022 ◽  
Vol 20 (4) ◽  
pp. 56-62
Author(s):  
M. A. Ryabova ◽  
M. Yu. Ulupov ◽  
N. A. Shumilova ◽  
G. V. Portnov ◽  
E. K. Tikhomirova ◽  
...  

Aim of the study was to compare the cutting and coagulation properties of 1.56 and 1.94 μm fiber lasers with those of a 0.98 μm semiconductor laser.Materials and methods. A comparative study of the biological effects of 1.56 and 1.94 µm lasers and a 0.98 µm semiconductor laser used in a constant, continuous mode was carried out. The cutting properties of the lasers were evaluated on the chicken muscle tissue samples by the width and depth of the ablation zone formed via a linear laser incision at a speed of 2 mm/s, while the coagulation properties were assessed by the width of the lateral coagulation zone. The zones were measured using a surgical microscope and a calibration slide. For statistical analysis, power values of 3, 5, 7, 9, and 11 W were chosen for each laser wavelength.Results. Analysis of the findings confirmed that laser wavelength had a statistically significant effect on the linear dependence between incision parameters and laser power. It was found that the 1.56 μm fiber laser (water absorption) had a greater coagulation ability but a comparable cutting ability compared with the 0.98 μm laser (hemoglobin absorption). When used in the power mode of 7W or higher, the 1.94 µm laser provided superior cutting performance compared with the 0.98 µm semiconductor laser at the same exposure power. Elevating the power in any of the lasers primarily increased the width of the ablation zone, and to a lesser extent – the crater depth and the width of the lateral coagulation zone. Therefore, in comparison with the 0.98 μm semiconductor laser, higher radiation power in the 1.56 and 1.94 μm lasers mainly influences their cutting properties, expanding the width and depth of the ablation zone, and has a smaller effect on their coagulation ability.Conclusion. The findings of the study showed that the 1.56 and 1.94 μm fiber lasers have better coagulation properties in comparison with the 0.98 μm semiconductor laser. was statistically proven that all incision characteristics (width of the lateral coagulation zone, depth and width of the ablation zone) for the 1.56, 1.94, and 0.98 μm lasers depend on the power of laser radiation. The 1.94 µm laser is superior to the 0.98 µm laser in its cutting properties. 


2011 ◽  
Vol 346 ◽  
pp. 731-737 ◽  
Author(s):  
Jin Feng Yang ◽  
Man Hua Liu ◽  
Hui Zhao ◽  
Wei Tao

This paper presents an efficient method to detect the fastener based on the technologies of image processing and optical detection. As feature descriptor, the Direction Field of fastener image is computed for template matching. This fastener detection method can be used to determine the status of fastener on the corresponding track, i.e., whether the fastener is on the track or missing. Experimental results are presented to show that the proposed method is computation efficiency and is robust for fastener detection in complex environment.


Author(s):  
Yong He

The current automatic packaging process is complex, requires high professional knowledge, poor universality, and difficult to apply in multi-objective and complex background. In view of this problem, automatic packaging optimization algorithm has been widely paid attention to. However, the traditional automatic packaging detection accuracy is low, the practicability is poor. Therefore, a semi-supervised detection method of automatic packaging curve based on deep learning and semi-supervised learning is proposed. Deep learning is used to extract features and posterior probability to classify unlabeled data. KDD CUP99 data set was used to verify the accuracy of the algorithm. Experimental results show that this method can effectively improve the performance of automatic packaging curve semi-supervised detection system.


2019 ◽  
Vol 38 (2) ◽  
pp. 282-295 ◽  
Author(s):  
Yongzhi Jiang ◽  
Pingbo Wu ◽  
Jing Zeng ◽  
Lai Wei ◽  
Kaikai Lv ◽  
...  

Wheel out of round, which has a significant influence on the ride comfort of vehicles, is very difficult to detect, especially for vehicles with rubber tires like a monorail. The prominent feature of wheel eccentricity caused by wheel out of round is that there will be a dominant frequency of the vehicle acceleration that varies with the speed of the vehicle, while the wavelengthes are all equal to the wheel circumference. By studying the experimental results of Chongqing straddle monorail, an indirect detection method of the wheel out of round is put forward. Then a simulation model of the monorail vehicle under the influence of the wheel out of round is established. The numerical analysis and experimental results lead to that the main reason for the abnormal vibration of the vehicle is the wheel out of round. Through the analysis of the vertical dynamic equation of the monorail system, all other factors that may affect the dominant frequency of vehicle vibration are analyzed. Finally, it is concluded this abnormal vibration caused by wheel out of round can only be reduced by increasing the vertical stiffness of the air spring and car body mass other than changing wheels.


Sensors ◽  
2019 ◽  
Vol 19 (10) ◽  
pp. 2348 ◽  
Author(s):  
Liangliang Lou ◽  
Jinyi Zhang ◽  
Yong Xiong ◽  
Yanliang Jin

Smart Parking Management Systems (SPMSs) have become a research hotspot in recent years. Many researchers are focused on vehicle detection technology for SPMS which is based on magnetic sensors. Magnetism-based wireless vehicle detectors (WVDs) integrate low-power wireless communication technology, which improves the convenience of construction and maintenance. However, the magnetic signals are not only susceptible to the adjacent vehicles, but also affected by the magnetic signal dead zone of high-chassis vehicles, resulting in a decrease in vehicle detection accuracy. In order to improve the vehicle detection accuracy of the magnetism-based WVDs, the paper introduces an RF-based vehicle detection method based on the characteristics analysis of received signal strengths (RSSs) generated by the wireless transceivers. Since wireless transceivers consume more energy than magnetic sensors, the proposed RF-based method is only activated to extract the data characteristics of RSSs to further judge the states of vehicles when the data feature of magnetic signals is not sufficient to provide accurate judgment on parking space status. The proposed method was evaluated in an actual roadside parking lot and experimental results show that when the sampling rate of magnetic sensor is 1 Hz, the vehicle detection accuracy is up to 99.62%. Moreover, compared with machine-learning-based vehicle detection method, the experimental results show that our method has achieved a good compromise between detection accuracy and power consumption.


Sign in / Sign up

Export Citation Format

Share Document