scholarly journals miR-513b-5p inhibits the proliferation and promotes apoptosis of retinoblastoma cells by targeting TRIB1

Open Medicine ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. 1364-1371
Author(s):  
Li-Juan Zhang ◽  
Fang Wang ◽  
Pei-Yan Qi ◽  
Wei-Yan Zhou ◽  
Bing Wang

Abstract MicroRNAs are involved in the pathogenesis of various human malignant tumors. This study aims to explore the role of miR-513b-5p in the malignant proliferation of retinoblastoma (RB) cells and its potential molecular mechanisms. The function-gain and function-loss experiments were performed in Weri-RB1 cells using miR-513b-5 mimics and inhibitors. miR-513b-5p mimics inhibited the proliferation and clone formation and promoted apoptosis of Weri-RB1 cells. In contrast, the miR-513b-5p inhibitor promoted the proliferation and clone formation of Weri-RB1 cells and inhibited cell apoptosis. miR-513b-5p can directly bind to the 3′UTR region of TRIB1 mRNA, and inhibit its protein expression. Overexpression of TRIB1 promoted the proliferation and cloning of Weri-RB1 cells but inhibited their apoptosis. The knockdown of TRIB1 inhibited the proliferation and clone formation of Weri-RB1 cells and promoted cell apoptosis. In addition, miR-513b-5p mimics neutralized the effects of TRIB1 overexpression on the proliferation and apoptosis of Weri-RB1 cells. Finally, miR-513b-5p can inhibit the phosphorylation level of AKT, mTOR, and p70, while TRIB1 played the opposite role. miR-513b-5p inhibits the malignant proliferation of Weri-RB1 cells by repressing the expression of TRIB1. miR-513b-5p and TRIB1 may be the biomarkers and/or key targets for clinical diagnosis and treatment of RB.

2020 ◽  
Vol 20 (9) ◽  
pp. 647-653
Author(s):  
Simei Zhang ◽  
Wunai Zhang ◽  
Ying Xiao ◽  
Tao Qin ◽  
Yangyang Yue ◽  
...  

MUC15, a member of the mucin family, is a heavily glycosylated transmembrane protein with the primary functions of lubricating surfaces, establishing a selective molecular barrier at the epithelium and mediating signal transduction. Aberrant expression of MUC15 plays a crucial role in the progression of multiple diseases, including malignant tumors. MUC15 has been identified as a tumor suppressor, but current evidence indicate its function as an oncogene in different types of cancers. MUC15 has been shown to be involved in the development of cancer and influence cellular growth, adhesion, invasion, metastasis and immune immunomodulation. However, the precise role of MUC15 in tumour development has not been thoroughly clarified. Here, we systematically summarize the structure and function of MUC15 in cancer, and discuss its potential role in cancer treatment.


Author(s):  
Heng Cao ◽  
Peng Guo ◽  
Xiaohui Wu ◽  
Jiankun Li ◽  
Chenlong Ge ◽  
...  

Background: Hepatocellular carcinoma (HCC) is one of the most common malignant tumors of digestive tract in the world. Therefore, it is important to carry out studies on the molecular mechanisms of early diagnosis and treatment of HCC to reduce mortality. Methods: Bioinformatic analysis was performed to explore the significant role of GCSF on the occurrence and development of neoplasm. Differently expressed genes (DEGs) were screened, and the significant hub genes related with GCSF were identified by the multiple algorithms of Cytoscape. Functional annotation for DEGs, pathological stage and overall survival analysis were implemented. In addition, the verification for the role of GCSF on HCC was made via the clinical samples. A total of 70 participates diagnosed as HCC were recruited from November 2014 to November 2019. The immunohistochemistry assay, qRT-PCR, receiver operating characteristic (ROC) curves, and overall survival analysis were carried out. Results: GCSF was related with the tumor size, and the expression of GCSF was up-regulated in hepatocellular carcinoma tissues. The enrichment results of GO and KEGG analysis were mainly enriched in “Inflammatory response”, “Protein binding”, “Metabolic pathways”, and “Proteasome”. The tumor diameter (P < 0.001), and survival time (P < 0.001) were significantly associated with expression of GCSF via the verification of clinical data. The univariate and multivariate Cox proportional regression analysis manifested that high expression of GCSF in patients with HCC was related to poor OS. Conclusion: The expression level of GCSF is significantly associated with the prognostic survival of HCC, and it is expected to become a new prognostic marker of HCC, providing a novel idea for future basic research as well as targeted therapy.


2015 ◽  
Vol 35 (6) ◽  
pp. 2192-2202 ◽  
Author(s):  
Guohua Lou ◽  
Yanning Liu ◽  
Shanshan Wu ◽  
Jihua Xue ◽  
Fan Yang ◽  
...  

Background: The anti-tumor effects of quercetin have been reported, but the underlying molecular mechanisms remain to be elucidated. The aim of present study was to explore the role of miRNA in the anticancer effects of quercetin. Methods: The differential miRNAs expression between the HepG2 and Huh7 cells treated by quercetin were detected by microarray. The xCELLigence, Flow cytometry, RT-PCR and Western blot were used to analyze the cell proliferation, cell apoptosis, cell cycle arrest, anti-tumor genes, and protein expression. Results: miR-34a was up-regulated in HepG2 cells treated by quercetin exhibiting wild-type p53. When inhibiting the miR-34a, the sensitivity of the cells to quercetin decreased and the expression of the SIRT1 was up-regulated, but the acetylation of p53 and the expression of some genes related to p53 down-regulated. Conclusion: miR-34a plays an important role in the anti-tumor effects of querctin in HCC, miR-34a may be a tiemolecule between the p53 and SIRT1 and is composed of a p53/miR-34a/SIRT1 signal feedback loop, which could enhance apoptosis signal and significantly promote cell apoptosis.


2020 ◽  
Author(s):  
Huascar Pedro Ortuste Quiroga ◽  
Shingo Yokoyama ◽  
Massimo Ganassi ◽  
Kodai Nakamura ◽  
Tomohiro Yamashita ◽  
...  

AbstractMechanical stimuli such as stretch and resistance training are essential to regulate growth and function of skeletal muscle. However, the molecular mechanisms involved in sensing mechanical stress remain unclear. Here, the purpose of this study was to investigate the role of the mechanosensitive ion channel Piezo1 during myogenic progression. Muscle satellite cell-derived myoblasts and myotubes were modified with stretch, siRNA knockdown and agonist-induced activation of Piezo1. Direct manipulation of Piezo1 modulates terminal myogenic progression. Piezo1 knockdown suppressed myoblast fusion during myotube formation and maturation. This was accompanied by downregulation of the fusogenic protein Myomaker. Piezo1 knockdown also lowered Ca2+ influx in response to stretch. Conversely Piezo1 activation stimulated fusion and increased Ca2+ influx in response to stretch. These evidences indicate that Piezo1 is essential for myotube formation and maturation, which may have implications for msucular dystrophy prevention through its role as a mechanosensitive Ca2+ channel.


2018 ◽  
Vol 214 (10) ◽  
pp. 1524-1531 ◽  
Author(s):  
Daolin Ji ◽  
Xiangyu Zhong ◽  
Xingming Jiang ◽  
Kaiming Leng ◽  
Yi Xu ◽  
...  

2021 ◽  
Vol 27 ◽  
Author(s):  
Jinlan Chen ◽  
Enqing Meng ◽  
Yexiang Lin ◽  
Yujie Shen ◽  
Chengyu Hu ◽  
...  

Background: As we all know, long non-coding RNA (lncRNA) affects tumor progression, which has caused a great upsurge in recent years. It can also affect the growth, migration, and invasion of tumors. When we refer to the abnormal expression of lncRNA, we will find it associated with malignant tumors. In addition, lncRNA has been proved to be a key targeted gene for the treatment of some diseases. PART1, a member of lncRNA, has been reported as a regulator in the process of tumor occurrence and development. This study aims to reveal the biological functions, specific mechanisms, and clinical significance of PART1 in various tumor cells. Methods: Through the careful search of PUBMED, the mechanisms of the effect of PART1 on tumorigenesis and development are summarized. Results: On the one hand, the up-regulated expression of PART1 plays a tumor-promoting role in tumors, including lung cancer, prostate cancer, bladder cancer and so on. On the other hand, PART1 is down-regulated in gastric cancer, glioma and other tumors to play a tumor inhibitory role. In addition, PART1 regulates tumor growth mainly by targeting microRNA such as miR-635, directly regulating the expression of proteins such as FUS/EZH2, affecting signal pathways such as the Toll-like receptor pathway, or regulating immune cells. Conclusion: PART1 is closely related to tumors by regulating a variety of molecular mechanisms. In addition, PART1 can be used as a clinical marker for the early diagnosis of tumors and plays an important role in tumor-targeted therapy.


Cells ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 2621
Author(s):  
Yun Kyung Lee ◽  
Yu Seong Chung ◽  
Ji Hye Lee ◽  
Jin Mi Chun ◽  
Jun Hong Park

For more than three decades, numerous studies have demonstrated the function of p53 in cell cycle, cellular senescence, autophagy, apoptosis, and metabolism. Among diverse functions, the essential role of p53 is to maintain cellular homeostatic response to stress by regulating proliferation and apoptosis. Recently, adipocytes have been studied with increasing intensity owing to the increased prevalence of metabolic diseases posing a serious public health concern and because metabolic dysfunction can directly induce tumorigenesis. The prevalence of metabolic diseases has steadily increased worldwide, and a growing interest in these diseases has led to the focus on the role of p53 in metabolism and adipocyte differentiation with or without metabolic stress. However, our collective understanding of the direct role of p53 in adipocyte differentiation and function remains insufficient. Therefore, this review focuses on the newly discovered roles of p53 in adipocyte differentiation and function.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Ming-Shien Wen ◽  
Chao-Yung Wang ◽  
Jih-Kai Yeh ◽  
Chun-Chi Chen ◽  
Ming-Lung Tsai ◽  
...  

Abstract Background Asprosin is a novel fasting glucogenic adipokine discovered in 2016. Asprosin induces rapid glucose releases from the liver. However, its molecular mechanisms and function are still unclear. Adaptation of energy substrates from fatty acid to glucose is recently considered a novel therapeutic target in heart failure treatment. We hypothesized that the asprosin is able to modulate cardiac mitochondrial functions and has important prognostic implications in dilated cardiomyopathy (DCM) patients. Methods We prospectively enrolled 50 patients (86% male, mean age 55 ± 13 years) with DCM and followed their 5-year major adverse cardiovascular events from 2012 to 2017. Comparing with healthy individuals, DCM patients had higher asprosin levels (191.2 versus 79.7 ng/mL, P < 0.01). Results During the 5-year follow-up in the study cohort, 16 (32.0%) patients experienced adverse cardiovascular events. Patients with lower asprosin levels (< 210 ng/mL) were associated with increased risks of adverse clinical outcomes with a hazard ratio of 7.94 (95% CI 1.88–33.50, P = 0.005) when compared patients with higher asprosin levels (≥ 210 ng/mL). Using cardiomyoblasts as a cellular model, we showed that asprosin prevented hypoxia-induced cell death and enhanced mitochondrial respiration and proton leak under hypoxia. Conclusions In patients with DCM, elevated plasma asprosin levels are associated with less adverse cardiovascular events in five years. The underlying protective mechanisms of asprosin may be linked to its functions relating to enhanced mitochondrial respiration under hypoxia.


2020 ◽  
Vol 102 (6) ◽  
pp. 1213-1224 ◽  
Author(s):  
Yingjie Wu ◽  
Haoran Li ◽  
Yinghe Qin

Abstract S100A4 has been suggested to be a critical regulator of tumor metastasis and is implicated in the progression of inflammation. The aim of this study is to investigate the expression and possible role of S100A4 in epididymitis. Using a mouse model of epididymitis induced by the injection of lipopolysaccharide (LPS) in the deferent duct, we found that LPS administration induced an upregulation of S100a4 transcription (P &lt; 0.05) and a recruitment of S100A4 positive cells in the epididymal interstitium of wild type (WT) mice. Co-immunofluorescence showed that S100A4 was mainly expressed by granulocytes, CD4 lymphocytes, and macrophages. Deficiency of S100A4 reduced epididymal pathological reaction and the mRNA levels of the pro-inflammatory cytokines IL-1β and TNF-α (P &lt; 0.01), suggesting that S100A4 promotes the progression of epididymitis. Furthermore, S100A4 deficiency alleviated the decline of sperm motility and rectified the abnormal expression of sperm membrane protein AMAD3, which suggested that in the progression of epididymitis, S100A4 aggravates the damage to sperm vitality. In addition, both Ki-67 marked cell proliferation and transferase-mediated dUTP-biotin nick end labeling detected cell apoptosis were reduced in S100a4−/− mice compared with WT mice after LPS treatment, indicating that S100A4 promotes both cell proliferation and cell apoptosis in epididymitis. Overall, these results demonstrate that S100A4 promotes the progression of LPS-induced epididymitis and facilitates a decline in sperm vitality, and its function may be related to the process of cell proliferation and apoptosis during inflammation.


2019 ◽  
Vol 31 (7) ◽  
pp. 1228
Author(s):  
Jane C. Fenelon ◽  
Bruce D. Murphy

Implantation is essential for the establishment of a successful pregnancy, and the preimplantation period plays a significant role in ensuring implantation occurs in a timely and coordinated manner. This requires effective maternal–embryonic signalling, established during the preimplantation period, to synchronise development. Although multiple factors have been identified as present during this time, the exact molecular mechanisms involved are unknown. Polyamines are small cationic molecules that are ubiquitously expressed from prokaryotes to eukaryotes. Despite being first identified over 300 years ago, their essential roles in cell proliferation and growth, including cancer, have only been recently recognised, with new technologies and interest resulting in rapid expansion of the polyamine field. This review provides a summary of our current understanding of polyamine synthesis, regulation and function with a focus on recent developments demonstrating the requirements for polyamines during the establishment of pregnancy up to the implantation stage, in particular the role of polyamines in the control of embryonic diapause and the identification of an alternative pathway for their synthesis in sheep pregnancy. This, along with other novel discoveries, provides new insights into the control of the peri-implantation period in mammals and highlights the complexities that exist in regulating this critical period of pregnancy.


Sign in / Sign up

Export Citation Format

Share Document