Corrosion behavior of the heat affected zone in a 316 L pipeline weld

2021 ◽  
Vol 63 (7) ◽  
pp. 617-622
Author(s):  
Wucheng Li ◽  
Jianli Zhang ◽  
Ping Xin ◽  
Zhigang Wen ◽  
Hongyang Jing ◽  
...  

Abstract On-site investigation, scanning electron microscope, energy dispersive X-ray spectroscopy, and cyclic potentiodynamic polarization test were carried out for failure analysis of the 316 L pipeline in this paper. The visual inspection revealed that the inner wall was covered with severe rust, and obvious misalignment and poor appearance were found in the weld. The energy dispersive X-ray spectroscopy result identified the presence of Cl in the inner wall of the pipeline. Some carbides of Cr and Mo precipitated in the heat affected zone, which partially deteriorated the corrosion resistance. The cyclic potentiodynamic polarization curve proved that the heat affected zone is not only sensitive to pitting corrosion, but also has inferior repassivation ability. Finally, the pitting preferentially occurred in the heat affected zone and gradually developed to leakage.

Author(s):  
Marc H. Peeters ◽  
Max T. Otten

Over the past decades, the combination of energy-dispersive analysis of X-rays and scanning electron microscopy has proved to be a powerful tool for fast and reliable elemental characterization of a large variety of specimens. The technique has evolved rapidly from a purely qualitative characterization method to a reliable quantitative way of analysis. In the last 5 years, an increasing need for automation is observed, whereby energy-dispersive analysers control the beam and stage movement of the scanning electron microscope in order to collect digital X-ray images and perform unattended point analysis over multiple locations.The Philips High-speed Analysis of X-rays system (PHAX-Scan) makes use of the high performance dual-processor structure of the EDAX PV9900 analyser and the databus structure of the Philips series 500 scanning electron microscope to provide a highly automated, user-friendly and extremely fast microanalysis system. The software that runs on the hardware described above was specifically designed to provide the ultimate attainable speed on the system.


2018 ◽  
Vol 21 (7) ◽  
pp. 495-500 ◽  
Author(s):  
Hassan A. Almarshad ◽  
Sayed M. Badawy ◽  
Abdalkarem F. Alsharari

Aim and Objective: Formation of the gallbladder stones is a common disease and a major health problem. The present study aimed to identify the structures of the most common types of gallbladder stones using X-ray spectroscopic techniques, which provide information about the process of stone formation. Material and Method: Phase and elemental compositions of pure cholesterol and mixed gallstones removed from gallbladders of patients were studied using energy-dispersive X-ray spectroscopy combined with scanning electron microscopy analysis and X-ray diffraction. Results: The crystal structures of gallstones which coincide with standard patterns were confirmed by X-ray diffraction. Plate-like cholesterol crystals with laminar shaped and thin layered structures were clearly observed for gallstone of pure cholesterol by scanning electron microscopy; it also revealed different morphologies from mixed cholesterol stones. Elemental analysis of pure cholesterol and mixed gallstones using energy-dispersive X-ray spectroscopy confirmed the different formation processes of the different types of gallstones. Conclusion: The method of fast and reliable X-ray spectroscopic techniques has numerous advantages over the traditional chemical analysis and other analytical techniques. The results also revealed that the X-ray spectroscopy technique is a promising technique that can aid in understanding the pathogenesis of gallstone disease.


2013 ◽  
Vol 19 (S2) ◽  
pp. 692-693
Author(s):  
P. Trimby

Extended abstract of a paper presented at Microscopy and Microanalysis 2013 in Indianapolis, Indiana, USA, August 4 – August 8, 2013.


2003 ◽  
Vol 18 (9) ◽  
pp. 2050-2054 ◽  
Author(s):  
Marcello Gombos ◽  
Vicente Gomis ◽  
Anna Esther Carrillo ◽  
Antonio Vecchione ◽  
Sandro Pace ◽  
...  

In this work, we report on the observation of Nd1Ba6Cu3O10,5 (Nd163) phase of the NdBaCuO system in melt-textured Nd123 bulk samples grown from a mixture of Nd123 and Nd210 phase powders. The observation was performed with polarized light optical microscopy and scanning electron microscopy–energy dispersive x-ray analyses. Images of the identified phase crystals show an aspect quite different from Nd422 crystals. Unexpectedly, Nd163 was individuated, even in “pure” Nd123 samples. Moreover, after long exposure to air, Nd163 disappeared completely in samples synthesized from powders containing Nd210. Thermogravimetry analyses of powders show that the stability of this phase in air is limited to temperatures higher than 900 °C, so Nd163 is unstable and highly reactive at room temperature. Moreover, an explanation of the observation of Nd163 in Nd210 free samples, based on the spontaneous formation of Nd163 phase in a Nd123 melt, is proposed.


Author(s):  
Congmin Li ◽  
Yanguo Yin ◽  
Ming Xu ◽  
Jianfeng Cheng ◽  
Lan Shen ◽  
...  

Abstract The microstructures of an Al-Bi immiscible alloy and the corresponding composites containing TiC (1 wt.% and 2 wt.%) were explored for melt temperatures of 800 °C, 850 °C, and 900°C. It was demonstrated that serious coarsening and macrosegregation of Bi-rich minority phase particles occurred, which was slightly alleviated by increasing the melt temperature from 800 °C to 900 °C. By adding TiC particles, the coarsening and macrosegregation of Bi-rich minority phase particles were significantly impeded. Scanning electron microscopy and energy-dispersive X-ray spectroscopy revealed that TiC particles were located inside and on the surface of Bi-rich minority phase particles, exhibiting heterogeneous nucleation and self-assembly behaviour. By properly increasing the holding time of the melt, finer and more uniform Bi-rich minority phase particles were obtained.


2021 ◽  
Vol 12 (1) ◽  
pp. 13-18
Author(s):  
Wayan Sujana

Nitridisasi merupakan suatu proses perlakuan panas termokimia yang dimana nitrogen dan amonia didifusikan kepermukaan material (ferro and non-ferro) pada temperatur 500-6000C sehingga membentuk pengerasan kulit akibat terbentuknya lapisan nitrida paduan pada permukaan. Namun pengerasan permukaan ditentukan oleh paduan dari material yang dilakukan proses nitridisasi.Tujuan Nitridisasi adalah untuk memperbaiki ketahanan aus, meningkatkan ketahanan lelah, dan memperbaiki ketahanan tehadap korosi. Proses nitidisasi ini juga dapat mengganti jenis perlakuan panas lain yang menekankan performance yang baik. Pada penelitian ini akan memanfaatkan besi cor nodular yanga akan diproses nitridisasi menggunakan fluidised bed furnace. Pada penelitian ini menggunakan pengujian distribusi kekerasan (metode vickers) untuk mengamati sejauh mana nitrogen berdifusi pada permukaan spesimen, dan pengamatan struktur mikro dengan scanning electron microscope, energy dispersive X-Ray spectroscopy (SEM-EDS).Penelitian ini akan memberikan informasi fenonema proses nitridisasi pada besi cor nodular sehingga mendapatkan suatu analisis yang sesuai dengan metode sehingga menghasilkan kualitas kekerasan permukaan yang baik.


Sign in / Sign up

Export Citation Format

Share Document