Wear and corrosion behavior of Mg-based alloy reinforced with TiC and ZrC particles

2020 ◽  
Vol 62 (12) ◽  
pp. 1161-1172
Author(s):  
Hülya Kaftelen Odabasi ◽  
Akın Odabasi

Abstract In this contribution, particle sizes of TiC (13 and 93 μm) and volume fractions of ZrC (5 and 10 vol.-%) with respect to reinforcement particles were varied to investigate the effects on the microstructure, hardness, density, wear and corrosion properties of AZ91 Mg matrix alloy. Experimental results revealed that the hardness, density and sliding wear performance of AZ91 alloy were markedly improved by the addition of carbide particles. Predominant wear and corrosion mechanisms were identified considering the size and volume fraction of the carbides. The composite sample comprising fine TiC particles (13 μm) exhibited the highest wear resistance at the same volume fraction as the coarse particles. Moreover, coarse ZrC particles with a low volume fraction (5 vol.-%) provided an enhanced wear resistance beyond that of the 10 vol.-% ZrC particles. Considering all the investigated composites, the corrosion resistance of the composites deteriorated with the increasing volume fraction and size of the carbide particles. Electrochemical measurements of the 0,5M NaCl solution revealed that increasing carbide particle size and volume fraction leads to lower corrosion resistance due to the formation of more cathodic areas which are preferred sites for the initiation of pitting corrosion.

2019 ◽  
Vol 54 (2) ◽  
pp. 141-152 ◽  
Author(s):  
Fatih Aydin ◽  
Yavuz Sun ◽  
M Emre Turan

This study aims to investigate the mechanical, wear and corrosion performances of TiC reinforced AZ91 matrix composites. AZ91 alloy and AZ91/TiC composites with different weight fractions of 10, 20 and 30 (wt%) were fabricated by powder metallurgy incorporating hot pressing. Microstructure characterization shows that partial agglomeration of particles is present especially in AZ91/30 wt% TiC composite. The addition of TiC led to significant improvement in hardness and wear resistance. Observed wear mechanism is abrasive. As compared with AZ91, compressive yield strength and ultimate compressive strength of the composites were also significantly improved. On the other hand, corrosion rate increased with the addition of TiC particles by virtue of presence of the galvanic reactions.


Author(s):  
A. Milanti ◽  
H. Koivuluoto ◽  
P. Vuoristo ◽  
G. Bolelli ◽  
F. Bozza ◽  
...  

Thermally sprayed iron-based coatings are being widely studied as alternative solution to conventional hardmetal (cermet) and Ni-based coatings for wear and corrosion applications in order to reduce costs, limit environmental impact and enhance the health safety. The aim of the present work is to study the cavitation erosion behaviour in distilled water and the corrosion properties in acidic solution of four high-velocity oxy-fuel (HVOF) sprayed Fe-based composite coatings. Fe-Cr-Ni-B-C powder was selected for its good sliding wear properties. In addition, a powder composition with an addition of Mo was studied in order to increase the corrosion resistance whereas additions of 20 wt. % and 40 wt. % WC-12Co as blended powder mixtures were investigated in order to increase wear resistance. Improvement of coating properties was significant with the advanced powder compositions. Dense coating structures with low porosity were detected with microstructural characterization. In addition, good cavitation wear resistance was achieved. The cavitation resistance of customized Fe-based coating with Mo addition was reported to be twice as high as that of conventional Ni-based and WC-CoCr coatings. The corrosion properties of HVOF Fe-based coatings were also evaluated by studying electrochemical behaviour in order to analyse their potential to use as corrosion barrier coatings.


Alloy Digest ◽  
2010 ◽  
Vol 59 (1) ◽  

Abstract Carpenter CTS-204P (Micro Melt 20-4) alloy is a highly wear- and corrosion-resistant, air-hardening martensitic cold-work stainless die steel produced using Carpenter’s Micro-Melt powder metallurgy process. The excellent wear resistance of the alloy is provided by a significant volume fraction of hard vanadium-rich carbides, while the outstanding corrosion resistance of the alloy is obtained as a result of the chromium-rich matrix. This datasheet provides information on composition, physical properties, hardness, and elasticity. It also includes information on corrosion and wear resistance as well as forming, heat treating, and machining. Filing Code: SS-1051. Producer or source: Carpenter Specialty Alloys.


Materials ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 46
Author(s):  
Hu Xu ◽  
Junsheng Sun ◽  
Jun Jin ◽  
Jijun Song ◽  
Chi Wang

At present, most Mo2FeB2-based cermets are prepared by vacuum sintering. However, vacuum sintering is only suitable for ordinary cylinder and cuboid workpieces, and it is difficult to apply to large curved surface and large size workpieces. Therefore, in order to improve the flexibility of preparing Mo2FeB2 cermet, a flux cored wire with 70% filling rate, 304 stainless steel, 60 wt% Mo powder and 40 wt% FeB powder was prepared. Mo2FeB2 cermet was prepared by an arc cladding welding metallurgy method with flux cored wire. In this paper, the microstructure, phase evolution, hardness, wear resistance and corrosion resistance of Mo2FeB2 cermets prepared by the vacuum sintering (VM-Mo2FeB2) and arc cladding welding metallurgy method (WM-Mo2FeB2) were systematically studied. The results show that VM-Mo2FeB2 is composed of Mo2FeB2 and γ-CrFeNi.WM-Mo2FeB2 is composed of Mo2FeB2, NiCrFe, MoCrFe and Cr2B3. The volume fraction of hard phase in WM-Mo2FeB2 is lower than that of VM-Mo2FeB2, and its hardness and corrosion resistance are also slightly lower than that of VM-Mo2FeB2, but there are obvious pores in the microstructure of VM-Mo2FeB2, which affects its properties. The results show that WM-Mo2FeB2 has good diffusion and metallurgical bonding with the matrix and has no obvious pores. The microstructure is compact and the wear resistance is better than that of VM-Mo2FeB2.


Author(s):  
L.-M. Berger ◽  
P. Vuoristo ◽  
T. Mäntylä ◽  
W. Kunert ◽  
W. Lengauer ◽  
...  

Abstract WC-Co-Cr represents an important composition for hardmetal-like coatings which is appHed when simuhaneous wear and corrosion resistance is required. In this paper five commercially available spray powders obtained by various production techniques (sintered and crushed as well as agglomerated and plasma-densified) of the composition WC-10%Co- 4%Cr have been thoroughly characterized and were sprayed by DCS, HVOF (CDS process) and APS. The microstructures of the coatings were characterized and their wear behaviour was investigated by means of an abrasion wear test. For the best of these powders the wear resistance was nearly equal for the DGS and HVOF coatings. Other powders show significant differences with respect to their processabilities in these spray processes. APS coatings from all powders, obtained with an Ar/H2 plasma showed inferior microstructures and significant lower wear resistance. The spray powder compositions, grain sizes and structures were found to determine the processability of the powders and the microstructure and properties of the coatings. COMPOSITE MATERIALS of the type hard phase - metallic binder with WC and CoCr as constituents are widely used for the preparation of hardmetal-like coatings. The chromium addition to the metallic binder is thought to improve its corrosion resistance in comparison with pure WC-Co. This has led to many applications of WC-CoCr coatings where simultaneous wear and corrosion resistance is required. Despite of its significant practical importance only a limited number of publications is devoted to detailed questions of structure and properties of WC-CoCr coatings (1-3). In some comparative studies such coatings have been investigated together with WC-Co and Cr3C2-NiCr coatings (4-8). However, systematic investigations of spray powder compositions and morphologies as well as investigations of the influence of different thermal spray processes on coating structures and properties which have repeatedly been provided for WC-Co (for example (9, 10)) are missing for WC-CoCr. In this paper a short survey of literature on the phase relationships in the WC-CoCr system and the effect of chromium additions on the properties of sintered parts and thermally sprayed coatings compared to WC-Co is given. In the experimental part a systematic study of the influence of the preparation process on composition and morphology of commercially available WC-10%Co-4%Cr spray powders was provided. These powders have been sprayed by DGS, HVOF and APS and the microstructure and basic properties of the coatings have been studied.


Author(s):  
I. Kretschmer ◽  
P. Heimgartner ◽  
R. Polak ◽  
P.A. Kammer

Abstract Fusible Ni-B-Si alloys with a variety of alloy additions (Cr, Mo, Cu etc.) have been in service for many years as fused coatings with moderate corrosion resistance. Both gas- and water-atomised powders have been used with the spray and fuse and with the plasma transferred arc process to produce coatings. As the severity of corrosive industrial environments has increased, for example in waste burning boilers, existing alloys have not provided the desired service performance. This study was undertaken to develop a new family of alloys with improved corrosion resistance without sacrificing usability, wear resistance or cost effectiveness. A range of compositions was prepared and evaluated for deposition characteristic, microstructure, hardness, wear resistance and corrosion resistance in various media. The resulting alloy has an exceptional combination of wear and corrosion resistance in comparison to conventional alloys, when tested under comparable conditions.


2021 ◽  
pp. 1-32
Author(s):  
Renato Pessoa ◽  
Carlos A H Laurindo ◽  
Michelle S Meruvia ◽  
Ricardo D Torres ◽  
Alexandre Mikowski ◽  
...  

Abstract In this study, the influence of Al2O3 particle amounts on the mechanical, tribological, and corrosion properties of the composite NiP-Al2O3 coating was evaluated. AISI 4140 steel was coated with NiP through an autocatalytic bath with the addition of Al2O3 particles maintained in suspension by mechanical stirring. Following, the coated samples were annealed at 600 °C to increase the hardness and to create an interdiffusion layer, which improves coating adhesion and corrosion resistance. The coating surface was characterized by SEM/EDS, XRD, microhardness, wear resistance, and corrosion tests. The results showed that the coating particles' amount depends on the bath agitation speed, the sample orientation during the deposition, and the volume of Al2O3 particles in the bath composition. Also, the number of particles in the coating affects the deposition kinetics, the thickness of the interdiffusion layer, which affects the wear and corrosion resistance.


2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Van Tuan Nguyen ◽  
Quy Le Thu ◽  
Tuan Anh Nguyen ◽  
Quoc Cuong Ly ◽  
Ly Pham Thi ◽  
...  

This study presents the effect of heat treatment on porosity, phase composition, microhardness, and wear and corrosion resistances of the thermal sprayed NiCr20 coating after sealing with aluminum phosphate. The annealing temperatures were varied in a range of 400 to 1000°C. The obtained results indicated the porosity of coating decreased with increasing the annealing temperature. After treatment at temperatures in range of 800-1000°C, more than 90% of initial pores in the coating were successfully filled with the sealants. The XRD data revealed not only the formation of new phases of other compounds, but also the interaction between coating and sealant. After heat treatment, wear resistance of coating was 12 times higher than that without heat treatment. The corrosion test in H2SO4 solution indicated that the presence of sealant in coatings increased their corrosion resistance. From these findings, application of these NiCr20 coatings to protect steel against wear and corrosion appears very promising.


2008 ◽  
Vol 373-374 ◽  
pp. 176-179
Author(s):  
Yan Ping Wu ◽  
Yong Xiang Leng ◽  
Sun Hong ◽  
Sheng Fa Zhu ◽  
Nan Huang ◽  
...  

CrNx film was widely used in mechanical engineering field because of its excellent anti-wear and corrosion resistance properties. While most of research was focused on mechanical properties, little attention had been paid to the corrosion resistance and residual stress of CrNx film . In this paper, CrNx films were deposited on silicon wafer (100) and iron substrate by unbalanced magnetron sputtering system (UBMS) at different N2 flow. Then the structure, thickness, residual stress, micro-hardness, wear-resistance and anti-corrosion properties of CrNx films were investigated. The results showed that the phase composition of CrNx films transformed from Cr, single phase Cr2N, Cr2N and CrN coexist to single CrN with the N2 flow rate increasing. The CrNx films composed with Cr2N phase, which deposited at 6 sccm N2 flow, had the highest microhardness and had higher compressive residual stress. Whereas the CrNx films with CrN and Cr2N phase coexist had the best wear and corrosion resistance.


Coatings ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 585
Author(s):  
Lin Zong ◽  
Yinglong Zhao ◽  
Shiteng Long ◽  
Ning Guo

The Fe-Cr-C coatings with different levels of Nb addition were prepared on carbon steel by a plasma transferred arc (PTA) weld-surfacing process and their microstructure and properties were investigated. As the Nb content increases from 8.96% to 12.55%, the coating gradually changes from a hypereutectic structure (martensite, austenite matrix, primary NbC and eutectic γ+M7C3) to a near eutectic structure (γ+M7C3 and NbC) and finally a hypoeutectic structure (primary γ, γ+M7C3 and NbC). As the Nb content increases, the hardness and wear resistance of the coating first increase and then decrease, which is closely related to the NbC volume fraction first increasing and then the NbC size coarsening. The Fe-Cr-C coating with 11.65% Nb balances the NbC content and size, and has the highest hardness and best wear resistance. As the Nb content increases further, the formation and aggregation of coarse NbC carbides in the coating results in high brittleness of the coating, which may cause the carbide particles to peel off the coating during the wear process, thereby reducing wear resistance.


Sign in / Sign up

Export Citation Format

Share Document