scholarly journals Nanoengineered photoactive theranostic agents for cancer

Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Nishant K. Jain ◽  
Bavya M. Chathoth ◽  
Vinil S. Bhaskar ◽  
Himanshu Meena ◽  
Rajendra Prasad ◽  
...  

Abstract Cancer has gained much attention because of slow development of advanced diagnostics and therapeutic strategies. So far, conventional procedures like surgery, radiation therapy and chemotherapy are only available options for cancer treatment which have various limitations. To overcome the limitations of conventional procedures, nanodiagnostics, and therapeutics are emerging approaches for localized diagnosis and treatment of cancer nowadays. So far, various bio-mimicking and stimuli active cancer theranostic platforms have been established but they are limited only for animal studies and their clinical translational progress is slow. Among various cancer theranostics platforms, photoresponsive systems have shown promising outcomes for cancer theranostics applications due to their specific physicochemical properties, biocompatibility, multifunctionality etc. Moreover, these photothermal agents in combination with diagnostics probes and surface functional targeting moieties demonstrate their synergistic response for site selective imaging and ablating cancer cells/tumor. Photoactive principles are rife and with increasing access to light irradiation setups, more the discovery of photoactive products, more would be the success reaped in cancer battle. This review highlights recent developments in cancer nanotheranostics with a special focus on photoactive functional nanotheranostics. Moreover, the challenges involved in clinical translation of photoactive materials along with their application in vivid areas of cancer nanomedicine and elucidate the future implications on photoactive therapy have been addressed here.

2021 ◽  
Vol 9 ◽  
Author(s):  
Xinyu Zhang ◽  
Yanling Ma ◽  
Jipeng Wan ◽  
Jia Yuan ◽  
Diqing Wang ◽  
...  

Ferroptosis, as a recently discovered non-apoptotic programmed cell death with an iron-dependent form, has attracted great attention in the field of cancer nanomedicine. However, many ferroptosis-related nano-inducers encountered unexpected limitations such as immune exposure, low circulation time, and ineffective tumor targeting. Biomimetic nanomaterials possess some unique physicochemical properties which can achieve immune escape and effective tumor targeting. Especially, certain components of biomimetic nanomaterials can further enhance ferroptosis. Therefore, this review will provide a comprehensive overview on recent developments of biomimetic nanomaterials in ferroptosis-related cancer nanomedicine. First, the definition and character of ferroptosis and its current applications associated with chemotherapy, radiotherapy, and immunotherapy for enhancing cancer theranostics were briefly discussed. Subsequently, the advantages and limitations of some representative biomimetic nanomedicines, including biomembranes, proteins, amino acids, polyunsaturated fatty acids, and biomineralization-based ferroptosis nano-inducers, were further spotlighted. This review would therefore help the spectrum of advanced and novice researchers who are interested in this area to quickly zoom in the essential information and glean some provoking ideas to advance this subfield in cancer nanomedicine.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Nian Liu ◽  
Xiao Chen ◽  
Xia Sun ◽  
Xiaolian Sun ◽  
Junpeng Shi

AbstractPersistent luminescence nanoparticles (PLNPs) are unique optical materials that emit afterglow luminescence after ceasing excitation. They exhibit unexpected advantages for in vivo optical imaging of tumors, such as autofluorescence-free, high sensitivity, high penetration depth, and multiple excitation sources (UV light, LED, NIR laser, X-ray, and radiopharmaceuticals). Besides, by incorporating other functional molecules, such as photosensitizers, photothermal agents, or therapeutic drugs, PLNPs are also widely used in persistent luminescence (PersL) imaging-guided tumor therapy. In this review, we first summarize the recent developments in the synthesis and surface functionalization of PLNPs, as well as their toxicity studies. We then discuss the in vivo PersL imaging and multimodal imaging from different excitation sources. Furthermore, we highlight PLNPs-based cancer theranostics applications, such as fluorescence-guided surgery, photothermal therapy, photodynamic therapy, drug/gene delivery and combined therapy. Finally, future prospects and challenges of PLNPs in the research of translational medicine are also discussed.


1998 ◽  
Vol 26 (4) ◽  
pp. 421-480
Author(s):  
Krys Bottrill

Recent developments in biomarkers relating to the interrelationship of diet, disease and health were surveyed. Most emphasis was placed on biomarkers of deleterious effects, since these are of greatest relevance to the subject of this review. The area of greatest activity was found to be that relating to biomarkers of mutagenic, genotoxic and carcinogenic effects. This is also one of the major areas of concern in considerations of the beneficial and deleterious effects of dietary components, and also the area in which regulatory testing requires studies of the longest duration. A degree of progress has also been made in the identification and development of biomarkers relating to certain classes of target organ toxicity. Biomarkers for other types of toxicity, such as immunotoxicity, neurotoxicity, reproductive toxicity and developmental toxicity, are less developed, and further investigation in these areas is required before a comprehensive biomarker strategy can be established. A criticism that recurs constantly in the biomarker literature is the lack of standardisation in the methods used, and the lack of reference standards for the purposes of validation and quality control. It is encouraging to note the growing acknowledgement of the need for validation of biomarkers and biomarker assays. Some validation studies have already been initiated. This review puts forward proposals for criteria to be used in biomarker validation. More discussion on this subject is required. It is concluded that the use of biomarkers can, in some cases, facilitate the implementation of the Three Rs with respect to the testing of food chemicals and studies on the effects of diet on health. The greatest potential is seen to be in the refinement of animal testing, in which biomarkers could serve as early and sensitive endpoints, in order to reduce the duration of the studies and also reduce the number of animals required. Biomarkers could also contribute to establishing a mechanistic basis for in vitro test systems and to facilitating their validation and acceptance. Finally, the increased information that could result from the incorporation of biomarker determinations into population studies could reduce the need for supplementary animal studies. This review makes a number of recommendations concerning the prioritisation of future activities on dietary biomarkers in relation to the Three Rs. It is emphasised, however, that further discussions will be required among toxicologists, epidemiologists and others researching the relationship between diet and health.


Nutrients ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 2497
Author(s):  
Alvin Man Lung Chan ◽  
Angela Min Hwei Ng ◽  
Mohd Heikal Mohd Yunus ◽  
Ruszymah Bt Hj Idrus ◽  
Jia Xian Law ◽  
...  

Metabolic syndrome (MetS) is the physiological clustering of hypertension, hyperglycemia, hyperinsulinemia, dyslipidemia, and insulin resistance. The MetS-related chronic illnesses encompass obesity, the cardiovascular system, renal operation, hepatic function, oncology, and mortality. To perform pre-clinical research, it is imperative that these symptoms be successfully induced and optimized in lower taxonomy. Therefore, novel and future applications for a disease model, if proven valid, can be extrapolated to humans. MetS model establishment is evaluated based on the significance of selected test parameters, paradigm shifts from new discoveries, and the accessibility of the latest technology or advanced methodologies. Ultimately, the outcome of animal studies should be advantageous for human clinical trials and solidify their position in advanced medicine for clinicians to treat and adapt to serious or specific medical situations. Rodents (Rattus norvegicus and Mus musculus) have been ideal models for mammalian studies since the 18th century and have been mapped extensively. This review compiles and compares studies published in the past five years between the multitude of rodent comparative models. The response factors, niche parameters, and replicability of diet protocols are also compiled and analyzed to offer insight into MetS-related disease-specific modelling.


Micromachines ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 80
Author(s):  
Xiaohu Zhou ◽  
Han Wu ◽  
Haotian Wen ◽  
Bo Zheng

Single-cell analysis is becoming an indispensable tool in modern biological and medical research. Single-cell isolation is the key step for single-cell analysis. Single-cell printing shows several distinct advantages among the single-cell isolation techniques, such as precise deposition, high encapsulation efficiency, and easy recovery. Therefore, recent developments in single-cell printing have attracted extensive attention. We review herein the recently developed bioprinting strategies with single-cell resolution, with a special focus on inkjet-like single-cell printing. First, we discuss the common cell printing strategies and introduce several typical and advanced printing strategies. Then, we introduce several typical applications based on single-cell printing, from single-cell array screening and mass spectrometry-based single-cell analysis to three-dimensional tissue formation. In the last part, we discuss the pros and cons of the single-cell strategies and provide a brief outlook for single-cell printing.


Author(s):  
Peter Everts ◽  
Kentaro Onishi ◽  
Prathap Jayaram ◽  
José Fábio Lana ◽  
and Kenneth Mautner

Emerging autologous cellular therapies that utilize platelet-rich plasma (PRP) applications have the potential to play adjunctive roles in a variety of regenerative medicine treatment plans. There is a global unmet need for tissue repair strategies to treat musculoskeletal (MSK) and spinal disorders, osteoarthritis (OA), and patients with chronic complex and recalcitrant wounds. PRP therapy is based on the fact that platelet growth factors (PGFs) support the three phases of wound healing and repair cascade (inflammation, proliferation, remodeling). Many different PRP formulations have been evaluated, originating from human, in vitro, and animal studies. However, recommendations from in vitro and animal research often lead to different clinical outcomes because it is difficult to translate non-clinical study outcomes and methodology recommendations to human clinical treatment protocols. In recent years, progress has been made in understanding PRP technology and the concepts for bioformulation, and new research directives and new indications have been suggested. In this review, we will discuss recent developments regarding PRP preparation and composition regarding platelet dosing, leukocyte activities concerning innate and adaptive immunomodulation, serotonin (5-HT) effects and pain killing. Furthermore, we discuss PRP mechanisms related to inflammation and angiogenesis in tissue repair and regenerative processes. Lastly, we will review the effect of certain drugs on PRP activity, and the combination of PRP and rehabilitation protocols.


In this chapter, the exciting developments in micropattern detectors in recent years are described. This includes GEM and MICROMEGAS detectors combined with micropixel readout, some peculiar designs of GEM and GEM-like detectors sensitive to UV and visible light, large area (>1m2) GEM and MICROMEGAS prototypes developed for the upgrades of the experiments at the large hadron collider, etc. A special focus is put on a new generation of spark-proof micropattern detectors, using resistive electrodes instead of traditional metallic ones. These detectors operate as ordinary micropattern detectors. However, in the case of occasional sparks, their current is limited by the resistivity of the electrodes so that the energy of the discharge is reduced by several orders of magnitude. Various designs of such detectors have been developed and successfully tested, including resistive GEM, resistive MICROMEGAS, resistive MSGC, etc. Among this family of detectors, a special place belongs to resistive parallel-plate micropattern detectors allowing one to achieve at the same time excellent spatial (38 µm) and time (77 ps) resolutions. Finally, the potential of multilayer detector technology for further optimization of the detector operation is discussed.


2017 ◽  
Vol 24 (1) ◽  
pp. 56-64
Author(s):  
Adefolake Adeyeye

Purpose The purpose of this paper is to examine the implications of foreign bribery and perceptions that bribery is just a cost of doing business in Africa in light of recent reports and developments in the global attempt to curb bribery and corruption. Design/methodology/approach The research relied on primary data from anti-corruption legislation, surveys and monitoring reports and secondary data from publicly available information, journal articles and media reports to analyse recent developments in the fight against corruption with a special focus on Africa. Findings The research findings and analysis suggest that foreign bribery, which is illegal but largely carried out with impunity and perceived as a just a cost of doing business in Africa, has heavy costs on developing nations and on corporations and individuals that are prosecuted. Although much has been done to curb corruption, it seems active enforcement takes place in only a limited number of countries. There is still the need for enhanced enforcement by nations, increased societal awareness of effective measures against corruption and improved corporate compliance and responsibility. Originality/value The paper contributes practical insights into improvements and lapses in the fight against foreign bribery and corruption. Using recent and relevant analysis, the paper revisits the resilience of bribery and corruption in spite of increased anti-corruption actions and the need for multiple and varied measures. The information provided will be useful for governments, corporations and civil society in the fight against corruption, which requires constant multilateral action and examination.


2020 ◽  
Vol 21 (20) ◽  
pp. 7794
Author(s):  
Peter Everts ◽  
Kentaro Onishi ◽  
Prathap Jayaram ◽  
José Fábio Lana ◽  
Kenneth Mautner

Emerging autologous cellular therapies that utilize platelet-rich plasma (PRP) applications have the potential to play adjunctive roles in a variety of regenerative medicine treatment plans. There is a global unmet need for tissue repair strategies to treat musculoskeletal (MSK) and spinal disorders, osteoarthritis (OA), and patients with chronic complex and recalcitrant wounds. PRP therapy is based on the fact that platelet growth factors (PGFs) support the three phases of wound healing and repair cascade (inflammation, proliferation, remodeling). Many different PRP formulations have been evaluated, originating from human, in vitro, and animal studies. However, recommendations from in vitro and animal research often lead to different clinical outcomes because it is difficult to translate non-clinical study outcomes and methodology recommendations to human clinical treatment protocols. In recent years, progress has been made in understanding PRP technology and the concepts for bioformulation, and new research directives and new indications have been suggested. In this review, we will discuss recent developments regarding PRP preparation and composition regarding platelet dosing, leukocyte activities concerning innate and adaptive immunomodulation, serotonin (5-HT) effects, and pain killing. Furthermore, we discuss PRP mechanisms related to inflammation and angiogenesis in tissue repair and regenerative processes. Lastly, we will review the effect of certain drugs on PRP activity, and the combination of PRP and rehabilitation protocols.


1994 ◽  
Vol 17 (7) ◽  
pp. 385-391 ◽  
Author(s):  
M. Diamantoglou ◽  
H.D. Lemke ◽  
J. Vienken

The majority of dialysis membranes are fabricated from regenerated unmodified cellulose. This standard type of cellulosic membrane is frequently under attack because of its alleged lack of biocompatibility. Recent developments, however, have proven that a chemical modification of the reactive surface groups of regenerated cellulose, the hydroxylgroups, limits the complement-activating potential of these materials and thus improves its blood-compatibility. We extended the idea of modifying cellulose for improved blood-compatibility to a series of different cellulose esters. Special focus was directed towards the question whether a variation of the type of substituent and degree of substitution could influence the blood-compatibility pattern of these materials: the analysis of blood-compatibility profiles showed a direct dependency on the type of substituent and the degree of substitution (DS). As an example, it was found that the DS, necessary for a complete reduction of complement activation, decreases with increasing chain lengths of aliphatic substituents. Optimal degrees of substitution are characteristic of the type of substituents and enable us to tailor materials specifically for optimized blood compatibility.


Sign in / Sign up

Export Citation Format

Share Document