scholarly journals Plasmons compressing the light – a jewel in the treasure chest of Mark Stockman’s legacy

Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Jacob B. Khurgin

Abstract Among all the contributions made by Mark Stockman, his work on concentrating the light energy to unprecedented densities is one of the most remarkable achievements. Here it is briefly reviewed and a relatively novel, intuitive, and physically transparent interpretation of nanofocusing using the effective volume of hybrid coupled modes formalism is presented and the role of Landau damping as the main limiting factor is highlighted.

2010 ◽  
Vol 81 (19) ◽  
Author(s):  
Ramon Cuscó ◽  
Esther Alarcón-Lladó ◽  
Luis Artús ◽  
Wilbur S. Hurst ◽  
James E. Maslar

2020 ◽  
Vol 637 ◽  
pp. 59-69 ◽  
Author(s):  
J Sullivan-Stack ◽  
BA Menge

Top predator decline has been ubiquitous across systems over the past decades and centuries, and predicting changes in resultant community dynamics is a major challenge for ecologists and managers. Ecological release predicts that loss of a limiting factor, such as a dominant competitor or predator, can release a species from control, thus allowing increases in its size, density, and/or distribution. The 2014 sea star wasting syndrome (SSWS) outbreak decimated populations of the keystone predator Pisaster ochraceus along the Oregon coast, USA. This event provided an opportunity to test the predictions of ecological release across a broad spatial scale and determine the role of competitive dynamics in top predator recovery. We hypothesized that after P. ochraceus loss, populations of the subordinate sea star Leptasterias sp. would grow larger, more abundant, and move downshore. We based these predictions on prior research in Washington State showing that Leptasterias sp. competed with P. ochraceus for food. Further, we predicted that ecological release of Leptasterias sp. could provide a bottleneck to P. ochraceus recovery. Using field surveys, we found no clear change in density or distribution in Leptasterias sp. populations post-SSWS, and decreases in body size. In a field experiment, we found no evidence of competition between similar-sized Leptasterias sp. and P. ochraceus. Thus, the mechanisms underlying our predictions were not in effect along the Oregon coast, which we attribute to differences in habitat overlap and food availability between the 2 regions. Our results suggest that response to the loss of a dominant competitor can be unpredictable even when based in theory and previous research.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Shugang Zhao ◽  
Hongxia Wang ◽  
Kai Liu ◽  
Linqing Li ◽  
Jinbing Yang ◽  
...  

Abstract Background Tissue culture is an effective method for the rapid breeding of seedlings and improving production efficiency, but explant browning is a key limiting factor of walnut tissue culture. Specifically, the polymerization of PPO-derived quinones that cause explant browning of walnut is not well understood. This study investigated explants of ‘Zanmei’ walnut shoot apices cultured in agar (A) or vermiculite (V) media, and the survival percentage, changes in phenolic content, POD and PPO activity, and JrPPO expression in explants were studied to determine the role of PPO in the browning of walnut explants. Results The results showed that the V media greatly reduced the death rate of explants, and 89.9 and 38.7% of the explants cultured in V media and A media survived, respectively. Compared with that of explants at 0 h, the PPO of explants cultured in A was highly active throughout the culture, but activity in those cultured in V remained low. The phenolic level of explants cultured in A increased significantly at 72 h but subsequently declined, and the content in the explants cultured in V increased to a high level only at 144 h. The POD in explants cultured in V showed high activity that did not cause browning. Gene expression assays showed that the expression of JrPPO1 was downregulated in explants cultured in both A and V. However, the expression of JrPPO2 was upregulated in explants cultured in A throughout the culture and upregulated in V at 144 h. JrPPO expression analyses in different tissues showed that JrPPO1 was highly expressed in stems, young leaves, mature leaves, catkins, pistils, and hulls, and JrPPO2 was highly expressed in mature leaves and pistils. Moreover, browning assays showed that both explants in A and leaf tissue exhibited high JrPPO2 activity. Conclusion The rapid increase in phenolic content caused the browning and death of explants. V media delayed the rapid accumulation of phenolic compounds in walnut explants in the short term, which significantly decreased explants mortality. The results suggest that JrPPO2 plays a key role in the oxidation of phenols in explants after branch injury.


2021 ◽  
Vol 127 (3) ◽  
Author(s):  
Umit Demirbas ◽  
Martin Kellert ◽  
Jelto Thesinga ◽  
Yi Hua ◽  
Simon Reuter ◽  
...  

AbstractWe present detailed experimental results with cryogenic Yb:YLF gain media in rod-geometry. We have comparatively investigated continuous-wave (cw) lasing and regenerative amplification performance under different experimental conditions. In the cw lasing experiments effect of crystal doping, cw laser cavity geometry and pump wavelength on lasing performance were explored. Regenerative amplification behavior was analyzed and the role of depolarization losses on performance was investigated. A recently developed temperature estimation method was also employed for the first time in estimating average crystal temperature under lasing conditions. It is shown that the thermal lens induced by transverse temperature gradients is the main limiting factor and strategies for future improvements are discussed. To the best of our knowledge, the achieved results in this study (375 W in cw, and 90 W in regenerative amplification) are the highest average powers ever obtained from this system via employing the broadband E//a axis.


2021 ◽  
Vol 135 (2) ◽  
pp. 186-191
Author(s):  
Paul M. Catling ◽  
Brenda Kostiuk ◽  
Jeffrey H. Skevington

Alaska Wild Rhubarb (Koenigia alaskana var. glabrescens; Polygonaceae) is a native Arctic, subarctic, and alpine plant of northwestern North America. Although the plant has some economic and ecological importance, its biology is poorly known. At 11 sites in the northeast corner of its range in Northwest Territories, we found that 87% of its floral visitors were flies, mostly Syrphidae, a diverse family known to be important pollinators. Insects visiting consecutive flowers on different plants and, thus, likely effecting pollination were also flies (78.6%) and also mostly Syrphidae (72.7%) followed by Hymenoptera (20%). Although syrphids were the dominant potential pollinators at most sites, there was some variation among sites. Our results provide quantitative support for pollinator diversity and the major role of Syrphidae in pollination of Alaska Wild Rhubarb. We suggest that pollination is not a limiting factor in this plant’s spread, nor its rare and local occurrence and restricted distribution, because the majority of its pollinators are widespread.


Author(s):  
Yan Zhao ◽  
Jason Cholewa ◽  
Huayu Shang ◽  
Yueqin Yang ◽  
Xiaomin Ding ◽  
...  

Skeletal muscle anabolic resistance (i.e., the decrease in muscle protein synthesis (MPS) in response to anabolic stimuli such as amino acids and exercise) has been identified as a major cause of age-related sarcopenia, to which blunted nutrition-sensing contributes. In recent years, it has been suggested that a leucine sensor may function as a rate-limiting factor in skeletal MPS via small-molecule GTPase. Leucine-sensing and response may therefore have important therapeutic potential in the steady regulation of protein metabolism in aging skeletal muscle. This paper systematically summarizes the three critical processes involved in the leucine-sensing and response process: (1) How the coincidence detector mammalian target of rapamycin complex 1 localizes on the surface of lysosome and how its crucial upstream regulators Rheb and RagB/RagD interact to modulate the leucine response; (2) how complexes such as Ragulator, GATOR, FLCN, and TSC control the nucleotide loading state of Rheb and RagB/RagD to modulate their functional activity; and (3) how the identified leucine sensor leucyl-tRNA synthetase (LARS) and stress response protein 2 (Sestrin2) participate in the leucine-sensing process and the activation of RagB/RagD. Finally, we discuss the potential mechanistic role of exercise and its interactions with leucine-sensing and anabolic responses.


2021 ◽  
Author(s):  
Carola Sparn ◽  
Eleni Dimou ◽  
Annalena Meyer ◽  
Roberto Saleppico ◽  
Sabine Wegehingel ◽  
...  

Fibroblast Growth Factor 2 (FGF2) is a tumor cell survival factor that is transported into the extracellular space by an unconventional secretory mechanism. Cell surface heparan sulfate proteoglycans are known to play an essential role in this process. Unexpectedly, we found that among the diverse sub-classes consisting of syndecans, perlecans, glypicans and others, Glypican-1 (GPC1) is both the principle and rate-limiting factor that drives unconventional secretion of FGF2. By contrast, we demonstrate GPC1 to be dispensable for FGF2 signaling into cells. We provide first insights into the structural basis for GPC1-dependent FGF2 secretion, identifying disaccharides with N-linked sulfate groups to be enriched in the heparan sulfate chains of GPC1 to which FGF2 binds with high affinity. Our findings have broad implications for the role of GPC1 as a key molecule in tumor progression.


2011 ◽  
Vol 2011 ◽  
pp. 1-6 ◽  
Author(s):  
Sandeep A. Kamath

Congestion, due in large part to hypervolemia, is the primary driver of heart failure (HF) admissions. Relief of congestion has been traditionally achieved through the use of loop diuretics, but there is increasing concern that these agents, particularly at high doses, may be deleterious in the inpatient setting. In addition, patients with HF and the cardiorenal syndrome (CRS) have diminished response to loop diuretics, making these agents less effective at relieving congestion. Ultrafiltration, a mechanical volume removal strategy, has demonstrated promise in achieving safe and effective volume removal in patients with cardiorenal syndrome and diuretic refractoriness. This paper outlines the rationale for ultrafiltration in CRS and the available evidence regarding its use in patients with HF. At present, the utility of ultrafiltration is restricted to selected populations, but a greater understanding of how this technology impacts HF and CRS may expand its use.


Biomolecules ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1639
Author(s):  
Xuan Zhao ◽  
Ting Jia ◽  
Xueyun Hu

The chlorophyll (Chl) cycle is the metabolic pathway for Chl a and Chl b inter-conversion. In this pathway, Chl b is synthesized from Chl a by the catalyzing action of chlorophyllide a oxygenase (CAO). In contrast, Chl b is firstly reduced to produce 7-hydroxymethyl Chl (HMChl) a, which is catalyzed by two isozymes of Chl b reductase (CBR), non-yellow coloring 1 (NYC1) and NYC1-like (NOL). Subsequently, HMChl a is reduced to Chl a by HMChl a reductase (HCAR). CAO plays a pivotal role in Chl a/b ratio regulation and plants over-accumulate Chl b in CAO-overexpressing plants. NYC1 is more accumulated in Chl-b-overproducing plants, while HCAR is not changed. To investigate the role of HCAR in Chl cycle regulation, the Chl metabolites of Chl-b-overproducing plants were analyzed. The results showed that HMChl a accumulated in these plants, and it decreased and the Chl a/b ratio increased by overexpressing HCAR, implying HCAR is insufficient for Chl cycle in Chl-b-overproducing plants. Furthermore, during dark-induced senescence, the non-programmed cell death symptoms (leaves dehydrated with green color retained) of Chl-b-overproducing plants were obviously alleviated, and the content of HM pheophorbide (HMPheide) a and Pheide b were sharply decreased by overexpressing HCAR. These results imply that HCAR is also insufficient for Chl degradation in Chl-b-overproducing plants during senescence, thus causing the accumulation of Chl metabolites and non-programmed cell death of leaves. With these results taken together, we conclude that HCAR is not well regulated and it is a limiting factor for Chl cycle and Chl b degradation in Chl-b-overproducing plants.


Sign in / Sign up

Export Citation Format

Share Document