scholarly journals Photoluminescence enhancement with all-dielectric coherent metasurfaces

Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Yu-Tsung Lin ◽  
Amir Hassanfiroozi ◽  
Wei-Rou Jiang ◽  
Mei-Yi Liao ◽  
Wen-Jen Lee ◽  
...  

Abstract Mie resonances have recently attracted much attention in research on dielectric metasurfaces, owning to their enriched multipole resonances, negligible optical loss, and efficient light emitter integration. Although there is a rapid advancement in this field, some fundamental developments are still required to provide a simpler and more versatile paradigm for photoluminescence (PL) control. In this work, we proposed that an all-dielectric coherent metasurface can engineer the PL response by tuning the array size. Such PL manipulation is attributed to the collective Mie resonances that mediate the inter-unit interactions between unit elements and alter the PL intensity. Metasurfaces with different chip sizes are utilized to explore the array size effect on the collective Mie resonances, field enhancement, and Q-factor in TiO2 metasurfaces. Incorporating the all-dielectric coherent metasurface with fluorescent photon emitters, we performed the dependence of PL enhancement on array size, which achieves an enhancement factor of ∼10 at the central area of a 90 × 90 μm2 TiO2 metasurface array. These findings provide an additional degree of freedom to engineer the near-field confinement and enhancement, allowing one to manipulate incoherent photon emission and tune light–matter interaction at the nanoscale.

Nanophotonics ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 2097-2105
Author(s):  
Xiaozhuo Qi ◽  
Tsz Wing Lo ◽  
Di Liu ◽  
Lantian Feng ◽  
Yang Chen ◽  
...  

AbstractPlasmonic nanocavities comprised of metal film-coupled nanoparticles have emerged as a versatile nanophotonic platform benefiting from their ultrasmall mode volume and large Purcell factors. In the weak-coupling regime, the particle-film gap thickness affects the photoluminescence (PL) of quantum emitters sandwiched therein. Here, we investigated the Purcell effect-enhanced PL of monolayer MoS2 inserted in the gap of a gold nanoparticle (AuNP)–alumina (Al2O3)–gold film (Au Film) structure. Under confocal illumination by a 532 nm CW laser, we observed a 7-fold PL peak intensity enhancement for the cavity-sandwiched MoS2 at an optimal Al2O3 thickness of 5 nm, corresponding to a local PL enhancement of ∼350 by normalizing the actual illumination area to the cavity’s effective near-field enhancement area. Full-wave simulations reveal a counterintuitive fact that radiation enhancement comes from the non-central area of the cavity rather than the cavity center. By scanning an electric dipole across the nanocavity, we obtained an average radiation enhancement factor of about 65 for an Al2O3 spacer thickness of 4 nm, agreeing well with the experimental thickness and indicating further PL enhancement optimization. Our results indicate the importance of configuration optimization, emitter location and excitation condition when using such plasmonic nanocavities to modulate the radiation properties of quantum emitters.


Nanophotonics ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 435-451 ◽  
Author(s):  
Taehee Kang ◽  
Young-Mi Bahk ◽  
Dai-Sik Kim

AbstractThrough the manipulation of metallic structures, light–matter interaction can enter into the realm of quantum mechanics. For example, intense terahertz pulses illuminating a metallic nanotip can promote terahertz field–driven electron tunneling to generate enormous electron emission currents in a subpicosecond time scale. By decreasing the dimension of the metallic structures down to the nanoscale and angstrom scale, one can obtain a strong field enhancement of the incoming terahertz field to achieve atomic field strength of the order of V/nm, driving electrons in the metal into tunneling regime by overcoming the potential barrier. Therefore, designing and optimizing the metal structure for high field enhancement are an essential step for studying the quantum phenomena with terahertz light. In this review, we present several types of metallic structures that can enhance the coupling of incoming terahertz pulses with the metals, leading to a strong modification of the potential barriers by the terahertz electric fields. Extreme nonlinear responses are expected, providing opportunities for the terahertz light for the strong light–matter interaction. Starting from a brief review about the terahertz field enhancement on the metallic structures, a few examples including metallic tips, dipole antenna, and metal nanogaps are introduced for boosting the quantum phenomena. The emerging techniques to control the electron tunneling driven by the terahertz pulse have a direct impact on the ultrafast science and on the realization of next-generation quantum devices.


2020 ◽  
Vol 124 (51) ◽  
pp. 28178-28185
Author(s):  
Emanuele Poliani ◽  
Daniel Seidlitz ◽  
Maximilian Ries ◽  
Soo J. Choi ◽  
James S. Speck ◽  
...  

Physics ◽  
2021 ◽  
Vol 3 (4) ◽  
pp. 955-968
Author(s):  
Yamin Wu ◽  
Yang Huang ◽  
Pujuan Ma ◽  
Lei Gao

The tunable optical pulling force on a graded plasmonic core-shell nanoparticle consisting of a gain dielectric core and graded plasmonic shell is investigated in the illumination of a plane wave. In this paper, the electrostatic polarizability and the equivalent permittivity of the core-shell sphere are derived and the plasmonic enhanced optical pulling force in the antibonding and bonding dipole modes of the graded nanoparticle are demonstrated. Additionally, the resonant pulling force occurring on the dipole mode is shown to be dependent on the aspect ratio of the core-shell particle, which is illustrated by the obtained equivalent permittivity. This shows that the gradation of the graded shell will influence the plasmonic feature of the particle, thus further shifting the resonant optical force peaks and strengthening the pulling force. The obtained results provide an additional degree of freedom to manipulate nanoparticles and give a deep insight into light–matter interaction.


ACS Photonics ◽  
2017 ◽  
Vol 4 (9) ◽  
pp. 2137-2143 ◽  
Author(s):  
Alexey S. Kadochkin ◽  
Alexander S. Shalin ◽  
Pavel Ginzburg

RSC Advances ◽  
2019 ◽  
Vol 9 (50) ◽  
pp. 29173-29181 ◽  
Author(s):  
Desalegn T. Debu ◽  
M. Hasan Doha ◽  
Hugh O. H. Churchill ◽  
Joseph B. Herzog

Plasmon coupling and hybridization in 2D materials plays a significant role for controlling light–matter interaction at the nanoscale.


2012 ◽  
Vol 11 (04) ◽  
pp. 1240019 ◽  
Author(s):  
TAIPING ZHANG ◽  
ALI BELAROUCI ◽  
SÉGOLÈNE CALLARD ◽  
PEDRO ROJO ROMEO ◽  
XAVIER LETARTRE ◽  
...  

We propose and demonstrate a hybrid cavity system in which an optical nanoantenna (NA) is evanescently coupled to a dielectric photonic crystal (PC) cavity. While the plasmonic component leads to strongly localized fields, photon storage mechanism is provided by the surrounding photonic crystal structure. The combined effect of plasmonic field enhancement and high quality factor opens new routes for the control of light-matter interaction at the nanoscale.


2016 ◽  
Vol 18 (34) ◽  
pp. 23680-23685 ◽  
Author(s):  
A. K. Sivadasan ◽  
Kishore K. Madapu ◽  
Sandip Dhara

Near field scanning optical microscopy is used for imaging as well as understanding the intrinsic properties of semiconducting and noble-metal nanostructures of sub-diffraction size.


Sign in / Sign up

Export Citation Format

Share Document