scholarly journals Insight into the significance of Joule dissipation, thermal jump and partial slip: Dynamics of unsteady ethelene glycol conveying graphene nanoparticles through porous medium

2021 ◽  
Vol 10 (1) ◽  
pp. 16-27
Author(s):  
Rohit Sharma ◽  
Chakravarthula S. Raju ◽  
Isaac L. Animasaun ◽  
Halavudara B. Santhosh ◽  
Manoj K. Mishra

Abstract In the production of ethelene glycol, graphene nanoparticles is inevitable and even suggested due to monomolecular layer of carbon atoms which are bounded like honey comb structure is known as graphene due to this structure, graphene has several types of exceptional and unique structural, optical and electronic properties. However, little is known on the enhancement of the transport phenomenon when Joule dissipation, inclined magnetic field, thermal jump and partial slip are apparent. With emphasis to the inherent aforementioned concepts together with heat source/sink and thermal radiation, this paper presents insight into the dynamics of unsteady Ethelene glycol conveying graphene nanoparticles through porous medium. The dimensional governing equation was non-dimenzionalized using fitting similarity variables and solved the dimensionless equations using Runge-Kutta Fehlberg algorithms along with the shooting technique. Also, a statistical method was implemented for multiple quadratic regression estimation analysis on the numerical figures of wall velocity gradient and local Nusselt number to establish the connection among heat transfer rate and physical parameters. Our numerical findings reveal that the magnetic field and porosity parameters boost the graphene Maxwell nanofluid velocity while Maxwell parameter has a reversal impact on it. The regression analysis confers that Nusselt number is more prone to heat absorption parameter as compared to Eckert number. The rate of heat transfer is higher in case of with slip compare to without slip flow in the presence of thermal radiation, viscous dissipation and unsteady parameter. The fluid velocity and temperature distribution is higher in without slip compare to with slip flow.

2015 ◽  
Vol 93 (5) ◽  
pp. 532-541 ◽  
Author(s):  
M. Modather M. Abdou ◽  
E. Roshdy EL-Zahar ◽  
Ali J. Chamkha

An analysis was carried out to study the effect of thermal radiation on magnetohydrodynamic boundary layer flow and heat transfer characteristics of a non-Newtonian viscoelastic fluid near the stagnation point of a vertical stretching sheet in a porous medium with internal heat generation–absorption. The flow is generated because of linear stretching of the sheet and influenced by the uniform magnetic field that is applied horizontally in the flow region. Using a similarity variable, the governing nonlinear partial differential equations have been transformed into a set of coupled nonlinear ordinary differential equations, which are solved numerically using an accurate implicit finite difference scheme. A comparison of the obtained results with previously published numerical results is done and the results are found to be in good agreement. The effects of the viscoelastic fluid parameter, magnetic field parameter, nonuniform heat source–sink, and the thermal radiation parameter on the heat transfer characteristics are presented graphically and discussed. The values of the skin friction coefficient and the local Nusselt number are tabulated for both cases of assisting and opposing flows.


2019 ◽  
Vol 24 (3) ◽  
pp. 725-737
Author(s):  
B. Zigta

Abstract An analysis is presented to study the effects of thermal radiation, chemical reaction, viscous and Joule dissipation on MHD free convection flow between a pair of infinite vertical Couette channel walls embedded in a porous medium. The fluid flows by a strong transverse magnetic field imposed perpendicularly to the channel wall on the assumption of a small magnetic Reynolds number. The governing non linear partial differential equations are transformed in to ordinary differential equations and are solved analytically. The effect of various parameters viz., Eckert number, electric conductivity, dynamic viscosity and strength of magnetic field on temperature profile has been discussed and presented graphically.


2009 ◽  
Vol 02 (03) ◽  
pp. 299-309 ◽  
Author(s):  
AYMAN MAHMOUD SOBH

In this paper, we study the interaction of peristalsis with heat transfer for the flow of a viscous fluid through a porous medium in uniform and nonuniform channels. The flow is subjected to constant transverse magnetic field. Long wavelength approximation (that is, the wavelength of the peristaltic wave is large compared with the radius of the channel) is used to solve the governing system. Closed form expressions are derived for the pressure–flow relationship, temperature, and heat transfer coefficient. The effects of various physical parameters are discussed through graphs.


Sign in / Sign up

Export Citation Format

Share Document