HEAT TRANSFER IN A SLIP FLOW OF PERISTALTIC TRANSPORT OF A MAGNETO-NEWTONIAN FLUID THROUGH A POROUS MEDIUM

2009 ◽  
Vol 02 (03) ◽  
pp. 299-309 ◽  
Author(s):  
AYMAN MAHMOUD SOBH

In this paper, we study the interaction of peristalsis with heat transfer for the flow of a viscous fluid through a porous medium in uniform and nonuniform channels. The flow is subjected to constant transverse magnetic field. Long wavelength approximation (that is, the wavelength of the peristaltic wave is large compared with the radius of the channel) is used to solve the governing system. Closed form expressions are derived for the pressure–flow relationship, temperature, and heat transfer coefficient. The effects of various physical parameters are discussed through graphs.

2012 ◽  
Vol 2012 ◽  
pp. 1-5 ◽  
Author(s):  
Rita Choudhury ◽  
Utpal Jyoti Das

The combined effect of a transverse magnetic field and radiative heat transfer on unsteady flow of a conducting optically thin viscoelastic fluid through a channel filled with saturated porous medium and nonuniform walls temperature has been discussed. It is assumed that the fluid has small electrical conductivity and the electromagnetic force produced is very small. Closed-form analytical solutions are constructed for the problem. The effects of the radiation and the magnetic field parameters on velocity profile and shear stress for different values of the viscoelastic parameter with the combination of the other flow parameters are illustrated graphically, and physical aspects of the problem are discussed.


2010 ◽  
Vol 65 (12) ◽  
pp. 1121-1127 ◽  
Author(s):  
Tasawar Hayat ◽  
Najma Saleem ◽  
Awatif A. Hendi

An analysis has been carried out for peristaltic flow and heat transfer of a Carreau fluid in an asymmetric channel with slip effect. The governing problem is solved under long wavelength approximation. The variations of pertinent dimensionless parameters on temperature are discussed. Pumping and trapping phenomena are studied.


2001 ◽  
Vol 203 ◽  
pp. 208-210 ◽  
Author(s):  
R. Erdélyi ◽  
Y. Taroyan

The combined effect of a subsurface steady homogeneous flow and a chromospheric uniform magnetic field on the solar p- and f-modes is evaluated theoretically for a simple model of the Sun. The derived dispersion relation is solved analytically in limit of the long wavelength approximation and is evaluated numerically for arbitrary wavelengths. The influence of an equilibrium flow is more dominant in limit of small wavenumbers. For arbitrary wavelengths the effect of a magnetic field might be stronger than frequency shifts caused by a steady homogeneous flow.


Author(s):  
Ashok Kumar ◽  
Jyoti Chawla

In this paper we study the effect of Mass and Heat transfer under the existence of transverse magnetic field for an oscillating two dimensional Micro-polar fluid flow through a moving infinite permeable plate in a porous medium. Investigate the Solutions for angular momentum, governing momentum, energy and concentration equations. Study the effect of chemical reaction, permeability parameters, velocity profiles, micro rotation profiles, wall stress coefficient and skin friction coefficient by using graph.


2020 ◽  
Vol 93 (9) ◽  
Author(s):  
Alexander Filusch ◽  
Holger Fehske

Abstract We address the electronic properties of quantum dots in the two-dimensional α − 𝒯3 lattice when subjected to a perpendicular magnetic field. Implementing an infinite mass boundary condition, we first solve the eigenvalue problem for an isolated quantum dot in the low-energy, long-wavelength approximation where the system is described by an effective Dirac-like Hamiltonian that interpolates between the graphene (pseudospin 1/2) and Dice (pseudospin 1) limits. Results are compared to a full numerical (finite-mass) tight-binding lattice calculation. In a second step we analyse charge transport through a contacted α − 𝒯3 quantum dot in a magnetic field by calculating the local density of states and the conductance within the kernel polynomial and Landauer-Büttiker approaches. Thereby the influence of a disordered environment is discussed as well. Graphical abstract


2008 ◽  
Vol 5 (2) ◽  
pp. 47-57 ◽  
Author(s):  
K. S. Mekheimer ◽  
Y. Abd Elmaboud

This study looks at the influence of an endoscope on the peristaltic flow of a particle–fluid suspension (as blood model) through tubes. A long wavelength approximation through a uniform and non-uniform infinite annulus filled with an incompressible viscous and Newtonian fluid mixed with rigid spherical particles of identical size is investigated theoretically. The inner tube is uniform, rigid and moving with a constant velocity V0, whereas the outer non-uniform tube has a sinusoidal wave travelling down its wall. The axial velocity of the fluid phase uf, particulate phase upand the pressure gradients have been obtained in terms of the dimensionless flow rateQ, the amplitude ratioɸ, particle concentrationC, the velocity constant V0and the radius ratio ϵ (the ratio between the radius of the inner tube and the radius of the outer one at the inlet). Numerical calculations for various values of the physical parameters of interest are carried out for the pressure rise and the friction force on the inner and the outer tubes.


2021 ◽  
Vol 10 (1) ◽  
pp. 16-27
Author(s):  
Rohit Sharma ◽  
Chakravarthula S. Raju ◽  
Isaac L. Animasaun ◽  
Halavudara B. Santhosh ◽  
Manoj K. Mishra

Abstract In the production of ethelene glycol, graphene nanoparticles is inevitable and even suggested due to monomolecular layer of carbon atoms which are bounded like honey comb structure is known as graphene due to this structure, graphene has several types of exceptional and unique structural, optical and electronic properties. However, little is known on the enhancement of the transport phenomenon when Joule dissipation, inclined magnetic field, thermal jump and partial slip are apparent. With emphasis to the inherent aforementioned concepts together with heat source/sink and thermal radiation, this paper presents insight into the dynamics of unsteady Ethelene glycol conveying graphene nanoparticles through porous medium. The dimensional governing equation was non-dimenzionalized using fitting similarity variables and solved the dimensionless equations using Runge-Kutta Fehlberg algorithms along with the shooting technique. Also, a statistical method was implemented for multiple quadratic regression estimation analysis on the numerical figures of wall velocity gradient and local Nusselt number to establish the connection among heat transfer rate and physical parameters. Our numerical findings reveal that the magnetic field and porosity parameters boost the graphene Maxwell nanofluid velocity while Maxwell parameter has a reversal impact on it. The regression analysis confers that Nusselt number is more prone to heat absorption parameter as compared to Eckert number. The rate of heat transfer is higher in case of with slip compare to without slip flow in the presence of thermal radiation, viscous dissipation and unsteady parameter. The fluid velocity and temperature distribution is higher in without slip compare to with slip flow.


Coatings ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 910
Author(s):  
Wael Abbas ◽  
Nabil T. M. Eldabe ◽  
Rasha A. Abdelkhalek ◽  
Nehad A. Zidan ◽  
Samir. Y. Marzouk

In this paper, the peristaltic motion of nano-coupled stress fluid through non-Darcy porous medium is investigated, and the heat transfer is taken into account. The system is stressed by an external magnetic field. The Ohmic and viscous couple stress dissipations, heat generation and chemical reaction are considered. This motion is modulated mathematically by a system of non-linear partial differential equations, which describe the fluid velocity, temperature and nanoparticles’ concentration. These equations are transformed to non-dimensional form with the associated appropriate boundary conditions. The homotopy perturbation method is used to find the solutions of these equations as a function of the physical parameters of the problem. The effects of the parameters on the obtained solutions are discussed numerically and illustrated graphically. It is found that these parameters play an important role to control the solutions. Significant outcomes from graphical elucidation envisage that the inclusion of more magnetic field strength increases the resistance of the fluid motion. Intensification of the couple stress parameter attenuates the temperature values, while it increases with increasing thermophoresis parameter.


2011 ◽  
Vol 66 (3-4) ◽  
pp. 215-222 ◽  
Author(s):  
Tasawar Hayat ◽  
Najma Saleem ◽  
Said Mesloub ◽  
Nasir Ali

In this investigation, we discuss the peristaltic motion based on the constitutive equations of a Carreau fluid in a channel. The fluid is electrically conducting in the presence of a uniform applied magnetic field. Four different wave forms are chosen. The fluid behaviour is studied using long wavelength approximation. Detailed analysis is performed for various emerging parameters on pumping and trapping phenomena. The present results reduce favourably with the currently available results of hydrodynamic case when the Hartman number is chosen zero.


Sign in / Sign up

Export Citation Format

Share Document