Evaluation of mulberry branch waste as raw material for nanocellulose synthesis: effects of the synthesis method on product properties

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Hui Zhao ◽  
Wenjuan Tao ◽  
Haoming Gu ◽  
Lifang Guo ◽  
Mai Han ◽  
...  

Abstract The mechanical pulp of mulberry branches was evaluated as a raw material for the production of cellulose II and its subsequent conversion to nanocellulose via high-pressure homogenization, 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO)-oxidation, and sulfuric acid hydrolysis. The morphology, chemical structure, crystallinity, and thermal stability of the nanocellulose samples prepared by each method were characterized by Fourier transform infrared spectroscopy, X-ray diffraction, field-emission scanning electron microscopy, atomic force microscopy, and thermogravimetric analysis. The results showed that nanocellulose prepared by high-pressure homogenization exhibited higher aspect ratio (>100), and the weight loss peak in the DTG chart was 361 °C, with the best thermal stability, whereas that prepared by sulfuric acid hydrolysis featured shorter fiber length (96±31 nm) and a higher crystallinity (78.2 %).The TEMPO oxidized nanocellulose (TOCN) had smaller width (5.5±1.6 nm) and high carboxyl content (1.5 mmol/g). In addition, we have further studied the application of TOCN in the wet end of papermaking, replacing the colloidal SiO2 in CPAM/ colloidal SiO2/APAM retention system with the same amount (3600 ppm) of TOCN. The study found that the strength of the paper obtained by adding TOCN instead of the traditional wet end additives is similar, and the water drainage and retention properties of the pulp are improved.

Polymers ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1130 ◽  
Author(s):  
Dingyuan Zheng ◽  
Yangyang Zhang ◽  
Yunfeng Guo ◽  
Jinquan Yue

Herein, walnut shell (WS) was utilized as the raw material for the production of purified cellulose. The production technique involves multiple treatments, including alkaline treatment and bleaching. Furthermore, two nanocellulose materials were derived from WS by 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO) oxidation and sulfuric acid hydrolysis, demonstrating the broad applicability and value of walnuts. The micromorphologies, crystalline structures, chemical functional groups, and thermal stabilities of the nanocellulose obtained via TEMPO oxidation and sulfuric acid hydrolysis (TNC and SNC, respectively) were comprehensively characterized. The TNC exhibited an irregular block structure, whereas the SNC was rectangular in shape, with a length of 55–82 nm and a width of 49–81 nm. These observations are expected to provide insight into the potential of utilizing WSs as the raw material for preparing nanocellulose, which could address the problems of the low-valued utilization of walnuts and pollution because of unused WSs.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Suxia Ren ◽  
Xiuxuan Sun ◽  
Tingzhou Lei ◽  
Qinglin Wu

Cellulose nanoparticles were fabricated from microcrystalline cellulose (MCC) through combined acid hydrolysis with sulfuric and hydrochloric acids and high-pressure homogenization. The effect of acid type, acid-to-MCC ratio, reaction time, and numbers of high-pressure homogenization passes on morphology and thermal stability of the nanoparticles was studied. An aggressive acid hydrolysis was shown to lead to rod-like cellulose nanocrystals with diameter about 10 nm and lengths in the range of 50–200 nm. Increased acid-to-MCC ratio and number of homogenization treatments reduced the dimension of the nanocrystals produced. Weak acid hydrolysis treatment led to a network of cellulose nanofiber bundles having diameters in the range of 20–100 nm and lengths of a few thousands of nanometers. The high-pressure homogenization treatment helped separate the nanofiber bundles. The thermal degradation behaviors characterized by thermogravimetric analysis at nitrogen atmosphere indicated that the degradation of cellulose nanocrystals from sulfuric acid hydrolysis started at a lower temperature and had two remarkable pyrolysis processes. The thermal stability of cellulose nanofibers produced from hydrochloric acid hydrolysis improved significantly.


RSC Advances ◽  
2018 ◽  
Vol 8 (7) ◽  
pp. 3619-3625 ◽  
Author(s):  
Shuang Yang ◽  
Qiuxia Xie ◽  
Xiuyu Liu ◽  
Min Wu ◽  
Shuangfei Wang ◽  
...  

Bleached softwood pulp was used to prepare nanofibrillated cellulose (NFC) by mechanical grinding and a high-pressure homogenization process.


2021 ◽  
Author(s):  
Yufeng Ma ◽  
Fei Song ◽  
Juan Yu ◽  
Nannan Wang ◽  
Puyou Jia ◽  
...  

Abstract The recent studies on sustainable plasticizer mainly focus on raw material source, synthesis method and plasticization, but the effect of chemical functional groups (epoxy group and ester group) of sustainable plasticizer on compatibility and thermal stability of plasticized polyvinyl chlorid (PVC) materials has been ignored. In this study, we synthesized two kinds of sustainable plasticizer, eleostearic acid eugenol ester(EAEE) and epoxidized EAEE. PVC films plasticized with EAEE were investigated and compared with epoxidized EAEE. PVC plasticized with epoxidized EAEE showed more flexible and thermal stability than EAEE. More hydrogen bonds were formed between PVC chains and epoxidized EAEE than that of PVC chains and EAEE, which caused the that epoxidized EAEE played more efficient plasticizing effect on PVC than EAEE. Epoxidized EAEE containing the flexible alkane chains and polar group (ester groups and epoxy groups) has stronger intermolecular interaction force than EAEE, causing homogeneous and smooth surface of plasticized PVC films.


Author(s):  
Oriana M. Vanderfleet ◽  
Daniel A. Osorio ◽  
Emily D. Cranston

Cellulose nanocrystals (CNCs) are emerging nanomaterials with a large range of potential applications. CNCs are typically produced through acid hydrolysis with sulfuric acid; however, phosphoric acid has the advantage of generating CNCs with higher thermal stability. This paper presents a design of experiments approach to optimize the hydrolysis of CNCs from cotton with phosphoric acid. Hydrolysis time, temperature and acid concentration were varied across nine experiments and a linear least-squares regression analysis was applied to understand the effects of these parameters on CNC properties. In all but one case, rod-shaped nanoparticles with a high degree of crystallinity and thermal stability were produced. A statistical model was generated to predict CNC length, and trends in phosphate content and zeta potential were elucidated. The CNC length could be tuned over a relatively large range (238–475 nm) and the polydispersity could be narrowed most effectively by increasing the hydrolysis temperature and acid concentration. The CNC phosphate content was most affected by hydrolysis temperature and time; however, the charge density and colloidal stability were considered low compared with sulfuric acid hydrolysed CNCs. This study provides insight into weak acid hydrolysis and proposes ‘design rules’ for CNCs with improved size uniformity and charge density. This article is part of a discussion meeting issue ‘New horizons for cellulose nanotechnology’.


2021 ◽  
Vol 9 ◽  
Author(s):  
Xiaoshan Yu ◽  
Yu Jiang ◽  
Qitang Wu ◽  
Zebin Wei ◽  
Xianke Lin ◽  
...  

This research focuses on the preparation of cellulose nanocrystals (CNCs) from Pennisetum hydridum fertilized by municipal sewage sludge (MSS) through sulfuric acid hydrolysis in different acid concentrations (40–65%), temperature (room temperature ∼55°C), and reaction time (50–120 min). The results showed that the obtained CNC possessed stable dispersion in water. The length of CNCs reached 272.5 nm under the condition of room temperature (RT), 65% acid concentration, and 120 min reaction time, and the diameter was within 10 nm. Furthermore, Fourier transform infrared (FTIR) showed that the CNC still kept the cellulose type I structure. The crystallinity of CNCs increased to the maximum by 18.34% compared with that of delignified Pennisetum hydridum fibers. Thermogravimetry (TG) illustrated the thermal stability of CNCs was lower than that of delignified Pennisetum hydridum fibers due to the introduction of sulfate groups in the cellulose. This study demonstrated that Pennisetum hydridum fertilized by MSS might be a suitable raw material for CNCs. This implies meaningful resource utilization of MSS and Pennisetum hydridum.


2019 ◽  
Vol 6 (1) ◽  
Author(s):  
Kaili Song ◽  
Xiaoji Zhu ◽  
Weiming Zhu ◽  
Xiaoyan Li

AbstractCalotropis procera fiber (CPF) is the fruit fiber of C. procera and belongs to a typical cellulosic fiber. In this study, Calotropis procera fiber (CPF) was first purified in the pretreatment process including delignification and bleaching before the isolation of cellulose nanocrystal. Chemical composition of Calotropis procera fiber was determined according to TAPPI standard method. It was composed of 64.0 wt% cellulose, 19.5 wt% hemicelluloses, and 9.7 wt% of lignin. The morphology of the Calotropis procera fiber and fiber after each pretreatment process was also investigated. Cellulose nanocrystal was extracted by classical sulfuric acid hydrolysis of the pretreated Calotropis procera fiber. TEM and SEM were used to analyze the morphologies of the obtained CNC. The crystallinity, thermal stability and suspension stability of the CNC were also investigated. The interesting results proved that this under-utilized biomass could be exploited as a new source of cellulose raw material for the production of cellulose nanocrystal.


Sign in / Sign up

Export Citation Format

Share Document