scholarly journals Isolation and Characterization of Nanocellulose with a Novel Shape from Walnut (Juglans Regia L.) Shell Agricultural Waste

Polymers ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1130 ◽  
Author(s):  
Dingyuan Zheng ◽  
Yangyang Zhang ◽  
Yunfeng Guo ◽  
Jinquan Yue

Herein, walnut shell (WS) was utilized as the raw material for the production of purified cellulose. The production technique involves multiple treatments, including alkaline treatment and bleaching. Furthermore, two nanocellulose materials were derived from WS by 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO) oxidation and sulfuric acid hydrolysis, demonstrating the broad applicability and value of walnuts. The micromorphologies, crystalline structures, chemical functional groups, and thermal stabilities of the nanocellulose obtained via TEMPO oxidation and sulfuric acid hydrolysis (TNC and SNC, respectively) were comprehensively characterized. The TNC exhibited an irregular block structure, whereas the SNC was rectangular in shape, with a length of 55–82 nm and a width of 49–81 nm. These observations are expected to provide insight into the potential of utilizing WSs as the raw material for preparing nanocellulose, which could address the problems of the low-valued utilization of walnuts and pollution because of unused WSs.

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Hui Zhao ◽  
Wenjuan Tao ◽  
Haoming Gu ◽  
Lifang Guo ◽  
Mai Han ◽  
...  

Abstract The mechanical pulp of mulberry branches was evaluated as a raw material for the production of cellulose II and its subsequent conversion to nanocellulose via high-pressure homogenization, 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO)-oxidation, and sulfuric acid hydrolysis. The morphology, chemical structure, crystallinity, and thermal stability of the nanocellulose samples prepared by each method were characterized by Fourier transform infrared spectroscopy, X-ray diffraction, field-emission scanning electron microscopy, atomic force microscopy, and thermogravimetric analysis. The results showed that nanocellulose prepared by high-pressure homogenization exhibited higher aspect ratio (>100), and the weight loss peak in the DTG chart was 361 °C, with the best thermal stability, whereas that prepared by sulfuric acid hydrolysis featured shorter fiber length (96±31 nm) and a higher crystallinity (78.2 %).The TEMPO oxidized nanocellulose (TOCN) had smaller width (5.5±1.6 nm) and high carboxyl content (1.5 mmol/g). In addition, we have further studied the application of TOCN in the wet end of papermaking, replacing the colloidal SiO2 in CPAM/ colloidal SiO2/APAM retention system with the same amount (3600 ppm) of TOCN. The study found that the strength of the paper obtained by adding TOCN instead of the traditional wet end additives is similar, and the water drainage and retention properties of the pulp are improved.


2016 ◽  
Vol 675-676 ◽  
pp. 31-34
Author(s):  
Achara Kleawkla ◽  
Pannarai Chuenkruth

Sugar is very important raw material of many industries such as food, beverage and renewable energy. In this research, pretreatment and hydrolysis of agricultural wastes to produce reducing sugars for an ethanol production were investigated. The rice stalk and corn stover from agricultural wastes were firstly pretreated with sodium hydroxide at 121 °C in different time as 20 30 and 40 minutes for removal of lignin. After that, the condition of hydrolysis using sulfuric acid of the pretreated rice stalk and corn stover was optimized. The optimum condition that obtained the highest reducing sugar content from rice stalk and corn stover of 76.12 and 136.25 mg/ml were using 1.0 % v/v sulfuric acid at temperature of 121 °C for a hydrolysis time of 40 minutes. This research made value adding in the industrial processing, decrease environmental problem and reduce global warming crisis by optimized utilization of agricultural waste.


2021 ◽  
Vol 9 ◽  
Author(s):  
Xiaoshan Yu ◽  
Yu Jiang ◽  
Qitang Wu ◽  
Zebin Wei ◽  
Xianke Lin ◽  
...  

This research focuses on the preparation of cellulose nanocrystals (CNCs) from Pennisetum hydridum fertilized by municipal sewage sludge (MSS) through sulfuric acid hydrolysis in different acid concentrations (40–65%), temperature (room temperature ∼55°C), and reaction time (50–120 min). The results showed that the obtained CNC possessed stable dispersion in water. The length of CNCs reached 272.5 nm under the condition of room temperature (RT), 65% acid concentration, and 120 min reaction time, and the diameter was within 10 nm. Furthermore, Fourier transform infrared (FTIR) showed that the CNC still kept the cellulose type I structure. The crystallinity of CNCs increased to the maximum by 18.34% compared with that of delignified Pennisetum hydridum fibers. Thermogravimetry (TG) illustrated the thermal stability of CNCs was lower than that of delignified Pennisetum hydridum fibers due to the introduction of sulfate groups in the cellulose. This study demonstrated that Pennisetum hydridum fertilized by MSS might be a suitable raw material for CNCs. This implies meaningful resource utilization of MSS and Pennisetum hydridum.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Pin Zhang ◽  
Manote Sutheerawattananonda

In this paper, glucosamine was produced by acid hydrolysis of five mushrooms. The glucosamine yields were investigated, and the optimum conditions were obtained as follows: acid type, sulfuric acid; acid concentration, 6 M; ratio of raw material to acid volume, 1 : 10; hydrolysis temperature, 100°C; and time, 6 h. Under these conditions, the glucosamine conversion from chitin content reached up to 92%. The results of hydrolysis kinetics indicated that hydrolysis of five mushrooms to glucosamine followed zero-order kinetics. Moreover, the relatively low activation energy for hydrolysis of straw mushroom (18.31 kJ/mol) and the highest glucosamine yield (56.8132 ± 3.5748 mg/g DM, 0.9824 g/g chitin) indicated that hydrolysis of straw mushroom was energy-saving. Thus, sulfuric acid hydrolysis of straw mushroom for glucosamine production should be considered as an efficient process for the future industrial application. However, further study is needed for glucosamine purification.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Alberto Palma ◽  
Javier Mauricio Loaiza ◽  
Manuel J. Díaz ◽  
Juan Carlos García ◽  
Inmaculada Giráldez ◽  
...  

Abstract Background Burning fast-growing trees for energy production can be an effective alternative to coal combustion. Thus, lignocellulosic material, which can be used to obtain chemicals with a high added value, is highly abundant, easily renewed and usually inexpensive. In this work, hemicellulose extraction by acid hydrolysis of plant biomass from three different crops (Chamaecytisus proliferus, Leucaena diversifolia and Paulownia trihybrid) was modelled and the resulting solid residues were used for energy production. Results The influence of the nature of the lignocellulosic raw material and the operating conditions used to extract the hemicellulose fraction on the heat capacity and activation energy of the subsequent combustion process was examined. The heat power and the activation energy of the combustion process were found to depend markedly on the hemicellulose content of the raw material. Thus, a low content in hemicelluloses resulted in a lower increased energy yield after acid hydrolysis stage. The process was also influenced by the operating conditions of the acid hydrolysis treatment, which increased the gross calorific value (GCV) of the solid residue by 0.6–9.7% relative to the starting material. In addition, the activation energy of combustion of the acid hydrolysis residues from Chamaecytisus proliferus (Tagasaste) and Paulownia trihybrid (Paulownia) was considerably lower than that for the starting materials, the difference increasing with increasing degree of conversion as well as with increasing temperature and acid concentration in the acid hydrolysis. The activation energy of combustion of the solid residues from acid hydrolysis of tagasaste and paulownia decreased markedly with increasing degree of conversion, and also with increasing temperature and acid concentration in the acid hydrolysis treatment. No similar trend was observed in Leucaena diversifolia (Leucaena) owing to its low content in hemicelluloses. Conclusions Acid hydrolysis of tagasaste, leucaena and paulownia provided a valorizable liquor containing a large amount of hemicelluloses and a solid residue with an increased heat power amenable to efficient valorization by combustion. There are many potential applications of the hemicelluloses-rich and lignin-rich fraction, for example as multi-components of bio-based feedstocks for 3D printing, for energy and other value-added chemicals.


PeerJ ◽  
2019 ◽  
Vol 6 ◽  
pp. e6186 ◽  
Author(s):  
Ting-Ting Jiang ◽  
Yan Liang ◽  
Xiang Zhou ◽  
Zi-Wei Shi ◽  
Zhi-Jun Xin

Background Sweet sorghum bagasse (SSB), comprising both a dermal layer and pith, is a solid waste generated by agricultural activities. Open burning was previously used to treat agricultural solid waste but is harmful to the environment and human health. Recent reports showed that certain techniques can convert this agricultural waste into valuable products. While SSB has been considered an attractive raw material for sugar extraction and the production of value-added products, the pith root in the SSB can be difficult to process. Therefore, it is necessary to pretreat bagasse before conventional hydrolysis. Methods A thorough analysis and comparison of various pretreatment methods were conducted based on physicochemical and microscopic approaches. The responses of agricultural SSB stem pith with different particle sizes to pretreatment temperature, acid and alkali concentration and enzyme dosage were investigated to determine the optimal pretreatment. The integrated methods are beneficial to the utilization of carbohydrate-based and unknown compounds in agricultural solid waste. Results Acid (1.5−4.5%, v/v) and alkali (5−8%, w/v) reagents were used to collect cellulose from different meshes of pith at 25–100 °C. The results showed that the use of 100 mesh pith soaked in 8% (w/v) NaOH solution at 100 °C resulted in 32.47% ± 0.01% solid recovery. Follow-up fermentation with 3% (v/v) acid and 6.5% (w/v) alkali at 50 °C for enzymolysis was performed with the optimal enzyme ratio. An analysis of the surface topography and porosity before and after pretreatment showed that both the pore size of the pith and the amount of exposed cellulose increased as the mesh size increased. Interestingly, various compounds, including 42 compounds previously known to be present and 13 compounds not previously known to be present, were detected in the pretreatment liquid, while 10 types of monosaccharides, including D-glucose, D-xylose and D-arabinose, were found in the enzymatic solution. The total monosaccharide content of the pith was 149.48 ± 0.3 mg/g dry matter. Discussion An integrated technique for obtaining value-added products from sweet sorghum pith is presented in this work. Based on this technique, lignin and hemicellulose were effectively broken down, amorphous cellulose was obtained and all sugars in the sweet sorghum pith were hydrolysed into monosaccharides. A total of 42 compounds previously found in these materials, including alcohol, ester, acid, alkene, aldehyde ketone, alkene, phenolic and benzene ring compounds, were detected in the pretreatment pith. In addition, several compounds that had not been previously observed in these materials were found in the pretreatment solution. These findings will improve the transformation of lignocellulosic biomass into sugar to create a high-value-added coproduct during the integrated process and to maximize the potential utilization of agricultural waste in current biorefinery processing.


2012 ◽  
Vol 620 ◽  
pp. 314-319
Author(s):  
Nur Amira Mamat Razali ◽  
Fauziah Abdul Aziz ◽  
Saadah Abdul Rahman

Hardwood is wood from angiosperm trees. The characteristic of hardwood include flowers, endosperm within seeds and the production of fruits that contain the seeds. This paper aims to discuss the preparation and characterization of cellulose obtained from hardwood. The hardwood Merbau (Intsia bijuga) was chosen as raw material in this study. Alkaline treatment and delignification methods were used for the preparation of cellulose. Acid hydrolysis was employed to produce cellulose nanocrystal (CNC). The treated and untreated samples were characterized using x-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM). The final product, from both trated and untreated samples were then compared.


2017 ◽  
Vol 39 (4) ◽  
pp. 423 ◽  
Author(s):  
George Meredite Cunha de Castro ◽  
Norma Maria Barros Benevides ◽  
Maulori Curié Cabral ◽  
Rafael De Souza Miranda ◽  
Enéas Gomes Filho ◽  
...  

 The seaweeds are bio-resource rich in sulfated and neutral polysaccharides. The tropical seaweed species used in this study (Solieria filiformis), after dried, shows 65.8% (w/w) carbohydrate, 9.6% (w/w) protein, 1.7% (w/w) lipid, 7.0% (w/w) moisture and 15.9% (w/w) ash. The dried seaweed was easily hydrolyzed under mild conditions (0.5 M sulfuric acid, 20 min.), generating fermentable monosaccharides with a maximum hydrolysis efficiency of 63.21%. Galactose and glucose present in the hydrolyzed were simultaneously fermented by Saccharomyces cerevisiae when the yeast was acclimated to galactose and cultivated in broth containing only galactose. The kinetic parameters of the fermentation of the seaweed hydrolyzed were Y(P⁄S) = 0.48 ± 0.02 g.g−1, PP = 0.27 ± 0.04 g.L−1.h−1, h = 94.1%, representing a 41% increase in bioethanol productivity. Therefore, S. filiformis was a promising renewable resource of polysaccharides easily hydrolyzed, generating a broth rich in fermentable monosaccharides for ethanol production. 


Sign in / Sign up

Export Citation Format

Share Document